287 research outputs found
Effect of Magnitude and Type of Damping on Soil Amplification
Soil Amplification studies conducted to obtain site specific seismic motions at the free surface of a soil deposit or at any other elevation (convolution process), or to determine compatible base motions at a given depth for soil structure interaction analyses (deconvolution) assume, when performed in the frequency domain simulating nonlinear soil behavior through an iterative linear analysis, that the internal soil damping is of a linear hysteretic nature. This tends to filter out excessively the high frequency components of motion for convolution studies and leads to eventual instability of the solution at a given depth (function of the soil properties) when performing deconvolution. In this paper, the results obtained using constant frequency independent, linear proportional and inverse proportional damping in the iterative solution are compared to those provided by true nonlinear analyses using consistent soil models
Spectral-analysis-surface-waves-method in ground characterization
The prediction of train induced vibration levels in structures close to railway tracks before track construction starts is important in order to avoid having to implement costly mitigation measures afterwards. The used models require an accurate characterization of the propagation medium i.e. the soil layers. To this end the spectral analysis of surface waves (SASW) method has been chosen among the active surface waves techniques available. As dynamic source a modal sledge hammer has been used. The generated vibrations have been measured at known offsets by means of several accelerometers. There are many parameters involved in estimating the experimental dispersion curve and, later on, thickness and propagation velocities of the different layers. Tests have been carried out at the Segovia railway station. Its main building covers some of the railway tracks and vibration problems in the building should be avoided. In the paper these tests as well as the influence of several parameters on the estimated soil profile will be detailed
Non-Abelian Vortices on Cylinder -- Duality between vortices and walls
We investigate vortices on a cylinder in supersymmetric non-Abelian gauge
theory with hypermultiplets in the fundamental representation. We identify
moduli space of periodic vortices and find that a pair of wall-like objects
appears as the vortex moduli is varied. Usual domain walls also can be obtained
from the single vortex on the cylinder by introducing a twisted boundary
condition. We can understand these phenomena as a T-duality among D-brane
configurations in type II superstring theories. Using this T-duality picture,
we find a one-to-one correspondence between the moduli space of non-Abelian
vortices and that of kinky D-brane configurations for domain walls.Comment: 33 pages, 17 figures, v2: references added, typos corrected, the
final version published in PR
Reconstructing mass profiles of simulated galaxy clusters by combining Sunyaev-Zeldovich and X-ray images
We present a method to recover mass profiles of galaxy clusters by combining
data on thermal Sunyaev-Zeldovich (tSZ) and X-ray imaging, thereby avoiding to
use any information on X-ray spectroscopy. This method, which represents a
development of the geometrical deprojection technique presented in Ameglio et
al. (2007), implements the solution of the hydrostatic equilibrium equation. In
order to quantify the efficiency of our mass reconstructions, we apply our
technique to a set of hydrodynamical simulations of galaxy clusters. We propose
two versions of our method of mass reconstruction. Method 1 is completely
model-independent, while Method 2 assumes instead the analytic mass profile
proposed by Navarro et al. (1997) (NFW). We find that the main source of bias
in recovering the mass profiles is due to deviations from hydrostatic
equilibrium, which cause an underestimate of the mass of about 10 per cent at
r_500 and up to 20 per cent at the virial radius. Method 1 provides a
reconstructed mass which is biased low by about 10 per cent, with a 20 per cent
scatter, with respect to the true mass profiles. Method 2 proves to be more
stable, reducing the scatter to 10 per cent, but with a larger bias of 20 per
cent, mainly induced by the deviations from equilibrium in the outskirts. To
better understand the results of Method 2, we check how well it allows to
recover the relation between mass and concentration parameter. When analyzing
the 3D mass profiles we find that including in the fit the inner 5 per cent of
the virial radius biases high the halo concentration. Also, at a fixed mass,
hotter clusters tend to have larger concentration. Our procedure recovers the
concentration parameter essentially unbiased but with a scatter of about 50 per
cent.Comment: 13 pages, 11 figures, submitted to MNRA
Instantons in the Higgs Phase
When instantons are put into the Higgs phase, vortices are attached to
instantons. We construct such composite solitons as 1/4 BPS states in
five-dimensional supersymmetric U(Nc) gauge theory with Nf(>=Nc) fundamental
hypermultiplets. We solve the hypermultiplet BPS equation and show that all 1/4
BPS solutions are generated by an Nc x Nf matrix which is holomorphic in two
complex variables, assuming the vector multiplet BPS equation does not give
additional moduli. We determine the total moduli space formed by topological
sectors patched together and work out the multi-instanton solution inside a
single vortex with complete moduli. Small instanton singularities are
interpreted as small sigma-model lump singularities inside the vortex. The
relation between monopoles and instantons in the Higgs phase is also clarified
as limits of calorons in the Higgs phase. Another type of instantons stuck at
an intersection of two vortices and dyonic instantons in the Higgs phase are
also discussed.Comment: 32 pages, 6 figures, typos corrected, comments and references adde
The geodesic approximation for lump dynamics and coercivity of the Hessian for harmonic maps
The most fruitful approach to studying low energy soliton dynamics in field
theories of Bogomol'nyi type is the geodesic approximation of Manton. In the
case of vortices and monopoles, Stuart has obtained rigorous estimates of the
errors in this approximation, and hence proved that it is valid in the low
speed regime. His method employs energy estimates which rely on a key
coercivity property of the Hessian of the energy functional of the theory under
consideration. In this paper we prove an analogous coercivity property for the
Hessian of the energy functional of a general sigma model with compact K\"ahler
domain and target. We go on to prove a continuity property for our result, and
show that, for the CP^1 model on S^2, the Hessian fails to be globally coercive
in the degree 1 sector. We present numerical evidence which suggests that the
Hessian is globally coercive in a certain equivariance class of the degree n
sector for n>1. We also prove that, within the geodesic approximation, a single
CP^1 lump moving on S^2 does not generically travel on a great circle.Comment: 29 pages, 1 figure; typos corrected, references added, expanded
discussion of the main function spac
Recommended from our members
CHARACTERIZING THE YUCCA MOUNTAIN SITE FOR DEVELOPING SEISMIC DESIGN GROUND MOTIONS
Yucca Mountain, Nevada is the designated site for the first long-term geologic repository to safely dispose spent nuclear fuel and high-level nuclear waste in the U.S. Yucca Mountain consists of stacked layers of welded and non-welded volcanic tuffs. Site characterization studies are being performed to assess its future performance as a permanent geologic repository. These studies include the characterization of the shear-wave velocity (Vs) structure of the repository block and the surface facilities area. The Vs data are an input in the calculations of ground motions for the preclosure seismic design and for postclosure performance assessment and therefore their accurate estimation is needed. Three techniques have been employed: 24 downhole surveys, 15 suspension seismic logging surveys and 95 spectral-analysis-of-surface-waves (SASW) surveys have been performed to date at the site. The three data sets were compared with one another and with Vs profiles developed from vertical seismic profiling data collected by the Lawrence Berkeley National Laboratory and with Vs profiles developed independently by the University of Nevada, Reno using the refraction microtremor technique. Based on these data, base case Vs profiles have been developed and used in site response analyses. Since the question of adequate sampling arises in site characterization programs and a correlation between geology and Vs would help address this issue, a possible correlation was evaluated. To assess the influence of different factors on velocity, statistical analyses of the Vs data were performed using the method of multi-factor Analysis of Variance (ANOVA). The results of this analysis suggest that the effect of each of three factors, depth, lithologic unit, and spatial location, on velocity is statistically significant. Furthermore, velocity variation with depth is different at different spatial locations: Preliminary results show that the lithologic unit alone explains about 54% and 42% of the velocity variation in the suspension and downhole data sets, respectively. The three factors together explain about 73% and 81% of the velocity variation in the suspension and downhole data sets, respectively. Development of a relationship, using multiple regression analysis, which may be used as a predictive tool to estimate velocity at a new location, is currently being examined
Hsp27 regulates podocyte cytoskeletal changes in an in vitro model of podocyte process retraction
Nephrotic syndrome (NS) is characterized by structural changes in the actin‐rich foot processes of glomerular podocytes. We previously identified high concentrations of the small heat shock protein hsp27 within podocytes as well as increased glomerular accumulation and phosphorylation of hsp27 in puromycin aminonucleoside (PAN) ‐induced experimental NS. Here we analyzed murine podocytes stably transfected with hsp27 sense, antisense, and vector control constructs using a newly developed in vitro PAN model system. Cell morphology and the microfilament structure of untreated sense and antisense transfectants were altered compared with controls. Vector cell survival, polymerized actin content, cell area, and hsp27 content increased after 1.25 μg/ml PAN treatment and decreased after 5.0 μg/ml treatment. In contrast, sense cells were unaffected by 1.25 μg/ml PAN treatment whereas antisense cells showed decreases or no changes in all parameters. Treatment of sense cells with 5.0 μ g/ml PAN resulted in increased cell survival and cell area whereas antisense cells underwent significant decreases in all parameters. Hsp27 provided dramatic protection against PAN‐induced microfilament disruption in sense > vector > antisense cells. We conclude that hsp27 is able to regulate both the morphological and actin cytoskeletal response of podocytes in an in vitro model of podocyte injury.—Smoyer, W. E., Ransom, R. F. Hsp27 regulates podocyte cytoskeletal changes in an in vitro model of podocyte process retraction. FASEB J. 16, 315–326 (2002)Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/154256/1/fsb2fj010681com.pd
1/2, 1/4 and 1/8 BPS Equations in SUSY Yang-Mills-Higgs Systems -- Field Theoretical Brane Configurations --
We systematically classify 1/2, 1/4 and 1/8 BPS equations in SUSY gauge
theories in d=6, 5, 4, 3 and 2 with eight supercharges, with gauge groups and
matter contents being arbitrary. Instantons (strings) and vortices (3-branes)
are only allowed 1/2 BPS solitons in d=6 with N=1 SUSY. We find two 1/4 BPS
equations and the unique 1/8 BPS equation in d=6 by considering configurations
made of these field theory branes. All known BPS equations are rederived while
several new 1/4 and 1/8 BPS equations are found in dimension less than six by
dimensional reductions.Comment: 41 pages, no figures, v2: 49 pages, no figures, typos corrected,
references added, the final version in NP
Solitons in the Higgs phase -- the moduli matrix approach --
We review our recent work on solitons in the Higgs phase. We use U(N_C) gauge
theory with N_F Higgs scalar fields in the fundamental representation, which
can be extended to possess eight supercharges. We propose the moduli matrix as
a fundamental tool to exhaust all BPS solutions, and to characterize all
possible moduli parameters. Moduli spaces of domain walls (kinks) and vortices,
which are the only elementary solitons in the Higgs phase, are found in terms
of the moduli matrix. Stable monopoles and instantons can exist in the Higgs
phase if they are attached by vortices to form composite solitons. The moduli
spaces of these composite solitons are also worked out in terms of the moduli
matrix. Webs of walls can also be formed with characteristic difference between
Abelian and non-Abelian gauge theories. We characterize the total moduli space
of these elementary as well as composite solitons. Effective Lagrangians are
constructed on walls and vortices in a compact form. We also present several
new results on interactions of various solitons, such as monopoles, vortices,
and walls. Review parts contain our works on domain walls (hep-th/0404198,
hep-th/0405194, hep-th/0412024, hep-th/0503033, hep-th/0505136), vortices
(hep-th/0511088, hep-th/0601181), domain wall webs (hep-th/0506135,
hep-th/0508241, hep-th/0509127), monopole-vortex-wall systems (hep-th/0405129,
hep-th/0501207), instanton-vortex systems (hep-th/0412048), effective
Lagrangian on walls and vortices (hep-th/0602289), classification of BPS
equations (hep-th/0506257), and Skyrmions (hep-th/0508130).Comment: 89 pages, 33 figures, invited review article to Journal of Physics A:
Mathematical and General, v3: typos corrected, references added, the
published versio
- …