
Available online at www.sciencedirect.com

ICM11 

Spectral-analysis-surface-waves-method in ground 

characterization 

J. Fernández 
1
, L. Hermanns 

2
, A. Fraile 

2
, E. Alarcón 

1
 and I. del Rey 

2
  

1 SINEX S.A.-Sociedad de Investigación, Estudios y Experimentación (Madrid, España)  
2 CEMIM- Centro de Modelado en Ingeniería Mecánica (Madrid, España) 

 

Abstract 

The prediction of train induced vibration levels in structures close to railway tracks before track construction starts is 

important in order to avoid having to implement costly mitigation measures afterwards. The used models require an 

accurate characterization of the propagation medium i.e. the soil layers. To this end the spectral analysis of surface 

waves (SASW) method has been chosen among the active surface waves techniques available. As dynamic source a 

modal sledge hammer has been used. The generated vibrations have been measured at known offsets by means of 

several accelerometers. There are many parameters involved in estimating the experimental dispersion curve and, 

later on, thickness and propagation velocities of the different layers. Tests have been carried out at the Segovia 

railway station. Its main building covers some of the railway tracks and vibration problems in the building should be 

avoided. In the paper these tests as well as the influence of several parameters on the estimated soil profile will be 

detailed. 
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1. Introduction 

Application of active and passive surface wave techniques of in situ seismic methods for determining 

shear wave velocity profiles has gained popularity during the last year. These techniques are also used for 

ground characterizations. Testing is performed on the ground surface, allowing less costly measurements 

than with traditional borehole methods. The basis of surface wave techniques is the dispersive 

characteristic of Rayleigh waves when travelling through a layered medium.  

 

In the active methods Rayleigh waves are generated by either an impulsive or a vertically oscillating 

harmonic source (such as hammers, weight drops, electromechanical shakers,) applied on the free surface 

of a vertically heterogeneous medium. One of these active techniques is the spectral analysis of surface 
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waves (SASW) [Ref 1], [Ref 2], [Ref 3] and [Ref 4]. This method has been used in the ground 

characterization in the Segovia railway station in Spain [Ref 5].  

 

2. Tests 

Due to the particular design of the new railway station in Segovia it was deemed necessary to estimate 

the vibration levels inside the building due to passing trains before construction started. To this end the 

method of substructures was selected employing numerical models for the building as well as for the soil 

layers. Their properties have been experimentally determined by means of the SASW method. 

 

Measurements were carried out at the Segovia railway station during the construction period in order 

to predict the vibration levels inside the station building due to rail traffic. It’s important to know that in 

this case, test conditions may not be optimal, due to the construction works. Measurement duration is 

limited by these works and you must be aware of possible noise caused by external vibration sources that 

can disturb the results. 

 

The following measurement equipment was used in the test: one modal hammer, two piezoelectric 

accelerometers, one acquisition system and one PC.   

 

Rayleigh waves are generated by the modal hammer oscillating at a circular frequency . Two 

receivers (accelerometers) located at distances r1 and r2 from the source detect the vertical particle motion 

that is recorded by the acquisition system and the PC.  

 

 

 

 

 

 

 

 

 

 

 

 

Fig 1. Measurements system distribution and registered time histories 

of load and acceleration 
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3. Results 

3.1. Dispersion curve 

The first result of the SASW method is the Rayleigh wave velocity dispersion curve. The particle 

velocity spectra is deduced from acceleration spectra:              

                                

                                                                            [1]       

 

 

From the velocity spectra V(r, ), two other important spectral quantities are calculated: the auto-

power spectrum of each receiver and the cross-power spectrum Sr1r2( ) of the two receivers: 

 

    ( , ) ( , )rrS V r V r      [2] 
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The time delay between receivers as a function of the circular frequency is given by the angle (arg) of 

[Sr1r2( )]/ . Hence, the phase velocity VR( ) of the propagating Rayleigh wave can be computed from: 

 

                     [4] 

 

 

This equation yields the experimental dispersion curve associated with a pair of receivers located at 

positions r1 and r2. To verify the test repeatability, the dispersion curve is calculated for each hammer 

impact. These dispersion curves, corresponding to the maximum, average and minimum values of each 

frequency for the impacts collections are shown in the Figure 2a. An excellent repeatability is noticed; the 

difference between the three curves is small in frequency range of interest. 

 

On the other hand, the quality of results is assessed by the calculating the coherence function from the 

registered data used in the dispersion curve calculation. The coherence function provides a measure of 

how the measured acceleration a(r1,t) is related to a(r2,t). It can be shown that 0
1 2r rC  1 with the 

upper bound 
1 2r rC =1 corresponding to a situation where there is an exact linear relationship between 

a(r1,t) and a(r2,t). Low coherence values may be attributed to the presence of noise, or more generally to 

the situation where the measured accelerations at the receiver r1 and r2 are not linearly related [Ref 2]. An 

additional cause for observed low values of the coherence function may be the near-field effects. 

 

  

                            [5] 

 

 

The coherence curve (Fig 2b), below 25 Hz, presents low values and therefore the results of the 

dispersion curve below this frequency should be interpreted with caution. In order to obtain acceptable 

low-frequency coherence, higher-mass excitations may be used. This implies the use of larger equipment, 

like a Mertz M12 vibrator. 
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There are also isolated frequencies, like 80 Hz, where the reliability of the data drops dramatically. 

This is an indication that there are vibration sources working at this frequency with a significant level 

compared with the hammer impact. For the subsequent adjustment process of a soil profile consistent 

with recorded data only frequencies where the coherence is above 0.95 have been used. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. (a) dispersion curve; (b) coherence function 

 

3.2. Ground characterization 

After the dispersion curve calculation, an adjustment of a soil profile is carried out in order to 

characterize the site. This is performed through an iterative process which starts with a trial stratification 

with each layer having a given Rayleigh waves propagation velocities. 

 

The stratification allows calculating the theoretical dispersion curve and comparing with experimental 

data. In next step, through successive iterations, the stratification will be changed in order to minimize the 

Root-Mean-Square (RMS) error between the experimental and theoretical dispersion curves. A lot of 
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Layer 1 2 3 4 5 6 7 8 9 10 11 12 13

Initial velocity (m/s) 500 450 420 400 350 300 300 400 550 800 1000 1200 1450

Layer Thickness (m) 200 225 250 275 300 325 350 375 400 425 450 475 500

1 0.2 425.5 496.2 387.3 428.8 467.9 534.7 412.2 545.9 404.2 473.9 419.9 530.7 434.4

2 0.2 462.2 465.6 432.4 414.2 482.9 522.8 436.4 490.2 438.2 489.0 300.8 531.8 428.0

3 0.2 418.3 378.9 422.9 378.9 424.3 379.3 434.2 402.3 426.1 414.6 442.1 409.1 398.1

4 0.2 330.1 368.8 371.5 302.6 299.6 238.5 346.1 333.0 325.0 282.0 440.8 278.6 341.9

5 0.2 248.6 277.9 349.5 251.3 271.5 290.3 343.3 284.2 310.9 255.4 413.6 310.6 281.4

6 0.5 221.3 192.8 198.9 230.7 214.4 241.3 203.1 193.6 220.0 212.6 164.8 198.5 221.2

7 0.5 305.2 319.4 271.8 274.4 309.0 258.9 282.9 294.8 284.7 329.6 388.5 274.8 285.9

8 1.0 395.9 383.3 428.1 421.5 350.6 368.6 385.5 433.5 383.8 365.4 482.0 383.1 424.2

9 1.0 566.5 574.2 574.8 630.4 584.8 602.2 690.3 612.5 576.2 576.3 625.5 694.0 621.0

10 2.0 768.1 794.4 759.8 826.8 845.1 847.1 1011.0 781.8 825.0 874.5 787.3 827.2 811.3

11 2.0 1034.0 1083.0 1037.0 962.9 1146.0 1118.0 1279.0 909.8 1129.0 1183.0 956.6 934.7 935.0

12 5.0 1285.0 1335.0 1280.0 1037.0 1383.0 1346.0 1448.0 994.2 1380.0 1405.0 1093.0 1036.0 996.3

13 5.0 1362.0 1411.0 1354.0 1047.0 1444.0 1406.0 1480.0 1015.0 1443.0 1454.0 1138.0 1074.0 1002.0

Initial Velocity in all layers (m/s)Shear Wave velocity (m/s)

iterations are necessary to get the final solution that represents the soil profile with the best adjustment 

because the problem is highly nonlinear. 

 

The starting shear wave velocity profile is a very influential parameter of the iterative process and the 

final result. Table 1 shows different results according to different initial velocities for all layers.  

Table 1. Influence of the initial stratification (shear wave velocity after eleven iterations). 

 

During the construction process explosives were used. These explosives have partially fractured the 

top layer and, furthermore additional layers were added to allow heavy vehicle traffic through the work. 

As a result the top layers have been compacted. The velocity of the deepest layer (approximately 1450 

m/s) was other known beforehand. With this information the first set of shear wave velocities is chosen in 

order to reproduce these different layers with the estimated soil profile.  

Table 2. Initial velocities of the definitive calculation (The depth of the different layers is indicated in Table 1) 

 

 

 

The number of layers is also an important parameter. The more layers the more accurate is the 

stratification model. In this case thirteen layers have been used to obtain satisfactory results. Figure 3 

illustrates a comparison between a model with five layers and the final model with thirteen layers. 

Obviously with only five layers the resolution of the superficial layers is worse. 

 

 

 

 

 

 

 

 

 

 

Fig. 3. Influence of the number of layers 
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Figure 4 shows the estimated soil profile and the dispersion curve adjustment after eleven iterations. 

Using the propagation speed in combination with an average density of 2000 kg/m3 allows calculating the 

shear modulus for each layer: 

 

                                                                                    [6] 

 

 

 

 

 

 

 

 

 

Fig. 4. (a) dispersion curve adjustment; (b) soil profile 

 

4. Conclusions 

Surface wave tests are non-invasive field techniques that can be used to determine the shear wave 

velocity profiles at a site. 

 

Measurements carried out at the construction site and data processing according to the SASW method 

allowed an assessment of the soil profile at the Segovia railway station.  

 

The influence of several parameters like the number of layers, the initial shear wave velocities and the 

number of iterations was studied. Taking into account the additional information available (velocity of 

the deepest layer, explosives use, etc) the search process is improved.  

 

This profile soil is used subsequently in numerical models in order to predict train induced vibration 

levels. 
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