4,177 research outputs found

    Metabolic responses of osteochondral allografts to re-warming after MOPS(TM) preservation versus standard of care storage

    Get PDF
    Osteoarthritis (OA) affects ~90% of people older than 65, and associated costs top $100 billion annually in the U.S. One treatment available for large cartilage defects seen in osteoarthritis is osteochondral allograft (OCA) transplantation. Currently, tissue banks store OCAs at 4 degree C and implantation is recommended within 28 days after procurement due to significant loss in chondrocyte viability after this time. Because mandatory disease screening protocols typically take 14 days to complete, the window for surgical implantation is narrow, which severely limits clinical use. The MOPS(TM) protocol can maintain OCAs for 56 days. In this study, OCAs stored using MOPS(TM) and SOC protocol were assessed for cell viability and metabolic biomarker production

    Solar Neutron Events of October-November 2003

    Full text link
    During the period when the Sun was intensely active on October-November 2003, two remarkable solar neutron events were observed by the ground-based neutron monitors. On October 28, 2003, in association with an X17.2 large flare, solar neutrons were detected with high statistical significance (6.4 sigma) by the neutron monitor at Tsumeb, Namibia. On November 4, 2003, in association with an X28 class flare, relativistic solar neutrons were observed by the neutron monitors at Haleakala in Hawaii and Mexico City, and by the solar neutron telescope at Mauna Kea in Hawaii simultaneously. Clear excesses were observed at the same time by these detectors, with the significance calculated as 7.5 sigma for Haleakala, and 5.2 sigma for Mexico City. The detector onboard the INTEGRAL satellite observed a high flux of hard X-rays and gamma-rays at the same time in these events. By using the time profiles of the gamma-ray lines, we can explain the time profile of the neutron monitor. It appears that neutrons were produced at the same time as the gamma-ray emission.Comment: 35 pages, 21 figures, accepted for publication in Ap

    Profiling of VEGFs and VEGFRs as Prognostic Factors in Soft Tissue Sarcoma: VEGFR-3 Is an Independent Predictor of Poor Prognosis

    Get PDF
    BACKGROUND: In non-gastrointestinal stromal tumor soft tissue sarcoma (non-GIST STS) optimal treatment is surgery with wide resection margins. Vascular endothelial growth factors (VEGFs) and receptors (VEGFRs) are known to be key players in the initiation of angiogenesis and lymphangiogenesis. This study investigates the prognostic impact of VEGFs and VEGFRs in non-GIST STS with wide and non-wide resection margins. METHODS: Tumor samples from 249 patients with non-GIST STS were obtained and tissue microarrays were constructed for each specimen. Immunohistochemistry was used to evaluate the expressions of VEGF-A, -C and -D and VEGFR-1, -2 and -3. RESULTS: In the univariate analyses, VEGF-A (P=0.040) in the total material, and VEGF-A (P=0.018), VEGF-C (P=0.025) and VEGFR-3 (P=0.027) in the subgroup with wide resection margins, were significant negative prognostic indicators of disease-specific survival (DSS). In the multivariate analysis, high expression of VEGFR-3 (P=0.042, HR=1.907, 95% CI 1.024-3.549) was an independent significant negative prognostic marker for DSS among patients with wide resection margins. CONCLUSION: VEGFR-3 is a strong and independent negative prognostic marker for non-GIST STSs with wide resection margins

    Particle trajectories in linearized irrotational shallow water flows

    Full text link
    We investigate the particle trajectories in an irrotational shallow water flow over a flat bed as periodic waves propagate on the water's free surface. Within the linear water wave theory, we show that there are no closed orbits for the water particles beneath the irrotational shallow water waves. Depending on the strength of underlying uniform current, we obtain that some particle trajectories are undulating path to the right or to the left, some are looping curves with a drift to the right and others are parabolic curves or curves which have only one loop

    Competition between normal and intruder states inside the "Island of Inversion"

    Get PDF
    The beta decay of the exotic 30Ne (N=20) is reported. For the first time, the low-energy level structure of the N=19, 30Na (Tz = 4), is obtained from beta-delayed gamma spectroscopy using fragment-beta-gamma-gamma coincidences. The level structure clearly displays "inversion", i.e., intruder states with mainly 2p2h configurations displacing the normal states to higher excitation energies. The good agreement in excitation energies and the weak and electromagnetic decay patterns with Monte Carlo Shell Model calculations with the SDPF-M interaction in the sdpf valence space illustrates the small d3/2 - f7/2 shell gap. The relative position of the "normal dominant" and "intruder dominant" excited states provides valuable information to understand better the N=20 shell gap.Comment: 4 pages, 5 figure

    Nanostratification of optical excitation in self-interacting 1D arrays

    Full text link
    The major assumption of the Lorentz-Lorenz theory about uniformity of local fields and atomic polarization in dense material does not hold in finite groups of atoms, as we reported earlier [A. E. Kaplan and S. N. Volkov, Phys. Rev. Lett., v. 101, 133902 (2008)]. The uniformity is broken at sub-wavelength scale, where the system may exhibit strong stratification of local field and dipole polarization, with the strata period being much shorter than the incident wavelength. In this paper, we further develop and advance that theory for the most fundamental case of one-dimensional arrays, and study nanoscale excitation of so called "locsitons" and their standing waves (strata) that result in size-related resonances and related large field enhancement in finite arrays of atoms. The locsitons may have a whole spectrum of spatial frequencies, ranging from long waves, to an extent reminiscent of ferromagnetic domains, -- to super-short waves, with neighboring atoms alternating their polarizations, which are reminiscent of antiferromagnetic spin patterns. Of great interest is the new kind of "hybrid" modes of excitation, greatly departing from any magnetic analogies. We also study differences between Ising-like near-neighbor approximation and the case where each atom interacts with all other atoms in the array. We find an infinite number of "exponential eigenmodes" in the lossless system in the latter case. At certain "magic" numbers of atoms in the array, the system may exhibit self-induced (but linear in the field) cancellation of resonant local-field suppression. We also studied nonlinear modes of locsitons and found optical bistability and hysteresis in an infinite array for the simplest modes.Comment: 39 pages, 5 figures; v2: Added the Conclusions section, corrected a typo in Eq. (5.3), corrected minor stylistic and grammatical imperfection

    Reversal of the Charge Transfer between Host and Dopant Atoms in Semiconductor Nanocrystals

    Full text link
    We present ab initio density functional calculations that show P (Al) dopant atoms in small hydrogen-terminated Si crystals to be negatively (positively) charged. These signs of the dopant charges are reversed relative to the same dopants in bulk Si. We predict this novel reversal of the dopant charge (and electronic character of the doping) to occur at crystal sizes of order 100 Si atoms. We explain it as a result of competition between fundamental principles governing charge transfer in bulk semiconductors and molecules and predict it to occur in nanocrystals of most semiconductors.Comment: 4 pages, 4 figures (3 in color), 2 table

    Observations of the geology and geomorphology of the 1999 Marsokhod test site

    Get PDF
    The Marsokhod rover returned data from six stations that were used to decipher the geomorphology and geology of a region not previously visited by members of the geomorphology field team. Satellite images and simulated descent images provided information about the regional setting. The landing zone was on an alluvial apron flanking a mountain block to the west and playa surface to the east. Rover color images, infrared spectra analysis of the mountains, and the apron surface provided insight into the rock composition of the nearby mountains. From the return data the geomorphology team interpreted the region to consist of compressionally deformed, ancient marine sediments and igneous rocks exposed by more recent extensional tectonics. Unconsolidated alluvial materials blanket the lower flanks of the mountains. An ancient shoreline cut into alluvial material marks a high stand of water during a past, wetter climate period. Playa sediments floor a present-day, seasonally, dry lake. Observations made by the rover using panoramic and close-up (hand specimens—scale) image data and color scene data confirmed the presence of boulders, cobbles, and fines of various provinces. Rover traverses to sites identified as geologically distinct, such as a fan, channel, shoreline, and playa, provided useful clues to the geologic interpretations. Analysis of local rocks was given context only through comparison with distant geologic features. These results demonstrated the importance of a multifaceted approach to site interpretation through comparison of interpretations derived by differing geologic techniques
    • 

    corecore