800 research outputs found

    Sprecherverteilung, Handlungsverlauf und Aufführung des Kyklops von Euripides

    Get PDF
    (a) Remarks on the indications of the speaker in the manuscripts of Euripides’ Cyclops. (b) Analysis of action and theatrical performance in this satyr play

    Measuring dopaminergic function in the 6-OHDA-lesioned rat: a comparison of PET and microdialysis

    Get PDF
    BACKGROUND: [(18) F]fluorodopa (FDOPA) positron emission tomography (PET) allows assessment of levodopa (LDOPA) metabolism and is widely used to study Parkinson's disease. We examined how [(18) F]FDOPA PET-derived kinetic parameters relate the dopamine (DA) and DA metabolite content of extracellular fluid measured by microdialysis to aid in the interpretation of data from both techniques. METHODS: [(18) F]FDOPA PET imaging and microdialysis measurements were performed in unilaterally 6-hydroxydopamine-lesioned rats (n = 8) and normal control rats (n = 3). Microdialysis testing included baseline measurements and measurements following acute administration of LDOPA. PET imaging was also performed using [(11)C]dihydrotetrabenazine (DTBZ), which is a ligand for the vesicular monoamine transporter marker and allowed assessment of denervation severity. RESULTS: The different methods provided highly correlated data. Lesioned rats had reduced DA metabolite concentrations ipsilateral to the lesion (p < 0.05 compared to controls), with the concentration being correlated with FDOPA's effective distribution volume ratio (EDVR; r = 0.86, p < 0.01) and DTBZ's binding potential (BP(ND); r = 0.89, p < 0.01). The DA metabolite concentration in the contralateral striatum of severely (>80%) lesioned rats was lower (p < 0.05) than that of less severely lesioned rats (<80%) and was correlated with the ipsilateral PET measures (r = 0.89, p < 0.01 for BP(ND)) but not with the contralateral PET measures. EDVR and BP(ND) in the contralateral striatum were not different from controls and were not correlated with the denervation severity. CONCLUSIONS: The demonstrated strong correlations between the PET and microdialysis measures can aid in the interpretation of [(18) F]FDOPA-derived kinetic parameters and help compare results from different studies. The contralateral striatum was affected by the lesioning and so cannot always serve as an unaffected control

    Liquid Xenon Detectors for Positron Emission Tomography

    Full text link
    PET is a functional imaging technique based on detection of annihilation photons following beta decay producing positrons. In this paper, we present the concept of a new PET system for preclinical applications consisting of a ring of twelve time projection chambers filled with liquid xenon viewed by avalanche photodiodes. Simultaneous measurement of ionization charge and scintillation light leads to a significant improvement to spatial resolution, image quality, and sensitivity. Simulated performance shows that an energy resolution of <10% (FWHM) and a sensitivity of 15% are achievable. First tests with a prototype TPC indicate position resolution <1 mm (FWHM).Comment: Paper presented at the International Nuclear Physics Conference, Vancouver, Canada, 201

    Dopamine Receptors in Parkinson's Disease: A Meta-Analysis of Imaging Studies

    Get PDF
    AbstractDopamine receptors are abundant along the central nigrostriatal tract and are expressed as 5 subtypes in two receptor families. In PD, compensatory changes in dopamine receptors emerge as a consequence of the loss of dopamine nerve terminals or dopaminergic pharmacotherapy. We performed a systematic review and meta‐analysis of the available PET and single‐photon emission computed tomography studies that have investigated dopamine receptors in PD, PSP and MSA. The inclusion criteria were studies including human PET or single‐photon emission computed tomography imaging; dopamine receptor tracers (D1‐like or D2‐like) and idiopathic PD, PSP, or MSA patients compared with healthy controls. The 67 included D2‐like studies had 1925 patients. Data were insufficient for an analysis of D1‐like studies. PD patients had higher striatal binding early in the disease, but after a disease duration of 4.36 years, PD patients had lower binding values than healthy controls. Striatal D2R binding was highest in unmedicated early PD patients and in the striatum contralateral to the predominant motor symptoms. PSP and MSA‐P patients had lower striatal D2R binding than PD patients (14.2% and 21.8%, respectively). There is initial upregulation of striatal D2Rs in PD, which downregulate on average 4 years after motor symptom onset, possibly because of agonist‐induced effects. The consistent upregulation of D2Rs in the PD striatum contralateral to the predominant motor symptoms indicates that receptor changes are driven by neurodegeneration and loss of striatal neuropil. Both PSP and MSA patients have clearly lower striatal D2R binding values than PD patients, which offers an opportunity for differential diagnostics. © 2021 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Societ

    Genetics of Dothistromin Biosynthesis in the Peanut Pathogen Passalora arachidicola

    Get PDF
    The peanut leaf spot pathogen Passalora arachidicola (Mycosphaerella arachidis) is known to produce dothistromin, a mycotoxin related to aflatoxin. This is a feature shared with the pine needle pathogen Dothistroma septosporum (Mycosphaerella pini). Dothistromin biosynthesis in D. septosporum commences at an unusually early stage of growth in culture compared to most other fungal secondary metabolites, and the biosynthetic genes are arranged in fragmented groups, in contrast to aflatoxin gene clusters. Dothistromin biosynthetic genes were identified and studied in P. arachidicola to determine if the attributes described in D. septosporum are shared by another dothistromin-producing species within the Class Dothideomycetes. It was shown that dothistromin biosynthesis is very similar in the two species with regard to gene sequence and gene synteny. Functional complementation of D. septosporum mutants with P. arachidicola dothistromin genes was also possible. These similarities support a vertical mode of dothistromin gene transmission. P. arachidicola also produced dothistromin at an early growth stage in culture, suggesting that this type of regulation pattern may be relevant to the biological role of dothistromin

    Is axonal degeneration a key early event in Parkinson’s disease?

    Get PDF
    Author Posting. © The Author(s), 2016. This is the author's version of the work. It is posted here by permission of IOS Press for personal use, not for redistribution. The definitive version was published in Journal of Parkinson's Disease 6 (2016): 703-707, doi:10.3233/JPD-160881.Recent research suggests that in Parkinson’s disease the long, thin and unmyelinated axons of dopaminergic neurons degenerate early in the disease process. We organized a workshop entitled ‘Axonal Pathology in Parkinson’s disease’, on March 23rd, 2016, in Cleveland, Ohio with the goals of summarizing the state-of-the-art and defining key gaps in knowledge. A group of eight research leaders discussed new developments in clinical pathology, functional imaging, animal models, and mechanisms of degeneration including neuroinflammation, autophagy and axonal transport deficits. While the workshop focused on PD, comparisons were made to other neurological conditions where axonal degeneration is well recognized

    Dystonia and paroxysmal dyskinesias: under-recognized movement disorders in domestic animals? A comparison with human dystonia/paroxysmal dyskinesias.

    Get PDF
    Dystonia is defined as a neurological syndrome characterized by involuntary sustained or intermittent muscle contractions causing twisting, often repetitive movements, and postures. Paroxysmal dyskinesias are episodic movement disorders encompassing dystonia, chorea, athetosis, and ballism in conscious individuals. Several decades of research have enhanced the understanding of the etiology of human dystonia and dyskinesias that are associated with dystonia, but the pathophysiology remains largely unknown. The spontaneous occurrence of hereditary dystonia and paroxysmal dyskinesia is well documented in rodents used as animal models in basic dystonia research. Several hyperkinetic movement disorders, described in dogs, horses and cattle, show similarities to these human movement disorders. Although dystonia is regarded as the third most common movement disorder in humans, it is often misdiagnosed because of the heterogeneity of etiology and clinical presentation. Since these conditions are poorly known in veterinary practice, their prevalence may be underestimated in veterinary medicine. In order to attract attention to these movement disorders, i.e., dystonia and paroxysmal dyskinesias associated with dystonia, and to enhance interest in translational research, this review gives a brief overview of the current literature regarding dystonia/paroxysmal dyskinesia in humans and summarizes similar hereditary movement disorders reported in domestic animals
    corecore