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ABSTRACT: Dopamine receptors are abundant along the
central nigrostriatal tract and are expressed as 5 subtypes in
two receptor families. In PD, compensatory changes in dopa-
mine receptors emerge as a consequence of the loss of
dopamine nerve terminals or dopaminergic pharmacotherapy.
We performed a systematic review and meta-analysis of the
available PET and single-photon emission computed tomog-
raphy studies that have investigated dopamine receptors in
PD, PSP and MSA. The inclusion criteria were studies includ-
ing human PET or single-photon emission computed tomog-
raphy imaging; dopamine receptor tracers (D1-like or D2-like)
and idiopathic PD, PSP, or MSA patients compared with
healthy controls. The 67 included D2-like studies had 1925
patients. Data were insufficient for an analysis of D1-like stud-
ies. PD patients had higher striatal binding early in the dis-
ease, but after a disease duration of 4.36 years, PD patients
had lower binding values than healthy controls. Striatal D2R
binding was highest in unmedicated early PD patients and in

the striatum contralateral to the predominant motor symp-
toms. PSP and MSA-P patients had lower striatal D2R bind-
ing than PD patients (14.2% and 21.8%, respectively). There
is initial upregulation of striatal D2Rs in PD, which down-
regulate on average 4 years after motor symptom onset, pos-
sibly because of agonist-induced effects. The consistent
upregulation of D2Rs in the PD striatum contralateral to the
predominant motor symptoms indicates that receptor
changes are driven by neurodegeneration and loss of
striatal neuropil. Both PSP and MSA patients have
clearly lower striatal D2R binding values than PD
patients, which offers an opportunity for differential
diagnostics. © 2021 The Authors. Movement Disorders
published by Wiley Periodicals LLC on behalf of Inter-
national Parkinson and Movement Disorder Society
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Endogenous dopamine and most antiparkinsonian
drugs exert their actions via postsynaptic dopamine
receptors. The two dopamine receptor families (D1-
and D2-like) and 5 dopamine receptor subtypes (D1R–
D5R) are encoded in humans by 5 genes (DRD1–
DRD5).1 In Parkinson’s disease (PD), the therapeutic
use of dopamine receptor agonists bypasses degenerated
mesencephalic dopamine production, but the clinical
benefits of agonists are generally less than those with
levodopa, and their use can be complicated by various
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side effects ranging from fibrotic heart disease with
ergoline derivatives to impulsive/compulsive disor-
ders.2,3 There are also results to suggest that long-term
and intermittent administration of dopaminergic drugs
may cause dopamine receptor downregulation in
advanced PD, when response to levodopa is suboptimal
and characterized by fluctuations and dyskinesias.4

Dopamine receptor upregulation in PD was first dem-
onstrated in the striatum of postmortem brains of PD
patients.5 The effect was assumed to be a consequence
of dopaminergic denervation. Later postmortem studies
and in vivo imaging have provided mixed results of this
upregulation in relation to temporal associations during
PD progression. Although many studies have suggested
that there is detectable upregulation in striatal dopa-
mine receptors in early PD, advanced PD patients
appear to show downregulation (eg, references 6–9). A
critical question is whether the dynamic changes in
dopamine receptor availability represent disease or
treatment effects and whether receptor downregulation
is a factor that reduces the efficacy of dopaminergic
drug treatment.
From a diagnostic point of view, it is possible that

patients with progressive supranuclear palsy (PSP) and
multiple system atrophy (MSA) lack the initial
upregulation phase of dopamine receptor binding,
which would support the use of combined pre- and
postsynaptic dopaminergic imaging in patients with
clinically uncertain parkinsonian syndromes.10,11 How-
ever, small sample size is a major limitation of most
functional neuroimaging studies, which complicates the
interpretation of individual studies. Meta-analysis
increases the power to detect differences while making
it possible to study potential moderating variables and
biases associated with single studies.
The present meta-analysis aimed to investigate dopa-

mine receptor changes in PD patients using pooled publi-
shed PET and single-photon emission computed
tomography data. We specifically aimed to answer:
(1) whether there is dopamine receptor upregulation in
early PD or downregulation in advanced PD, (2) when
the possible upregulation turns to downregulation and
how this is associated with drug treatments, (3) if
there are clinically relevant interhemispheric differ-
ences in dopamine receptor binding, and (4) if dopa-
mine receptor binding characteristics could be used to
help in the differential diagnosis of PD versus atypical
parkinsonian syndromes.

Methods

The study was carried out in accordance with the Pre-
ferred Reporting Items for Systematic Reviews and
Meta-Analyses (PRISMA) guidelines.12

Search Strategy
PubMed was searched with specific headings alone

and in combination with key words for longitudinal
progression studies from database inception until
March 6, 2020 (Fig. 1). The references of retrieved arti-
cles and review articles were also manually searched for
missed studies.

Specific Aims for the Meta-Analysis
This meta-analysis aimed to systematically investigate

changes in striatal dopamine receptor binding in PD
patients compared with healthy controls and patients
with PSP and MSA. The primary outcome was the
mean difference in striatal subregions in relation to
potential effect size moderators such as age, disease
duration, and motor symptom severity measures.

Selection Criteria
All titles and abstracts from searches were

reviewed, and studies were excluded if the title and/or
abstract were not appropriate for the aim of the
review. Full texts were obtained for eligible studies or
when the relevance of an article was uncertain. The
inclusion criteria for the selected studies were:
(1) study involved human PET or single-photon emis-
sion computed tomography (SPECT) imaging;
(2) binding of a dopamine receptor tracer (D1-like or
D2-like) was assessed; (3) idiopathic PD, PSP, or
MSA patients were compared with healthy controls
(unmedicated or medicated, patients with deep brain
stimulation [DBS] or thalamotomy excluded in group
comparisons); and (4) binding was reported as the
mean � SD in at least one striatal region. If more
than one population was reported in a study (eg,
early and advanced PD patients), those populations
were included as separate samples with the same con-
trol sample.

Risk of Bias in Included Studies
The presence of publication bias was explored by

funnel plots and Egger’s tests for asymmetry, together
with the trim-and-fill method with imputed data
points. The quality of studies was evaluated with a
modified Newcastle-Ottawa scale.1

Data Extraction
The variables extracted were study year, first author’s

family name, study site (city, state, country), method
for binding uptake calculation, number of subjects in
each group, mean � SD age (years), sex of participants,
mean � SD disease duration (years), mean � SD
Unified Parkinson’s Disease Rating Scale (UPDRS)
motor score, mean � SD Hoehn and Yahr stage score,
scanner type, mean injected dose (MBq), scan duration
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(minutes), and mean � SD uptake data (for each group
and brain region; if the study did not report mean
striatal values, they were generated using means of cau-
date and putamen values).

Statistical Analysis
Brain regional group comparisons were conducted

using Meta-Essentials (version 1.0; Erasmus University,
Rotterdam, The Netherlands).13 The effect sizes were
measured with Hedges’ g values as standardized mean
differences using a random-effects model. Heterogeneity
of the effect sizes was examined using I2 statistics. If sub-
stantial heterogeneity with I2 > 50% was observed, the
influence of effect moderators, including age, disease
duration, UPDRS motor score, and HY scale, on tracer
uptake was analyzed using meta-regression analyses with

SAS System for Windows, version 9.4 (SAS Institute
Inc., Cary, NC). The normality assumptions of the resid-
uals were examined with histograms. The homoscedas-
ticity was checked with scatterplots between predicted
values and residuals. Both the normality and homosce-
dasticity assumptions were met.
Subgroup analyses between medicated and unmedi-

cated PD patients and between PET and SPECT studies
were performed using random effects for between-
subgroup weighting and random effects (tau separate
for subgroups) for within-subject weighting. Differences
in the combined effect sizes of the subgroups were
tested with an analysis of variance based on sums of
squares.14 Interhemispheric correlation coefficients were
calculated from 4 studies that reported individual hemi-
spheric values.15–18 The weighted mean r of 0.913 was
used for the remaining studies in the meta-analysis of

FIG. 1. Flowchart of study inclusion and exclusion. [Color figure can be viewed at wileyonlinelibrary.com]
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dependent effect sizes. Percent differences were
expressed as weighted relative differences (weighting
according to sample size). Statistical significance was
set at two-tailed P < 0.05.

Results
Study Characteristics

The demographic and clinical characteristics of the
patient samples included in the 67 D2R studies are
presented in Table 1 and in Tables S1–S3. Data were
insufficient for analyses of D1R studies, as only 5 D1R
studies reported PET or SPECT results in PD, MSA, or
PSP patients. The 67 included D2R studies had 75 indi-
vidual patient samples involving 1925 patients (Fig. 1,
Table S1). Because MSA-C samples were reported only
in two studies, they were excluded from the analysis,
and the included MSA samples had patients with
MSA-P or unspecified MSA.

Parkinson’s Disease
D2R binding in the caudate nucleus was 9.8% lower

in PD patients (medicated and unmedicated combined)
than in healthy controls (g = 0.67; CI, 0.34–1.01; n
[samples/patients], 29/680; I2 = 71.6%, P < 0.0001),
but there were no differences in the putamen (g = �0.32;
CI, �0.73 to 0.10; n = 29/680, I2 = 79.6%, P = 0.12) or
the striatum (g = 0.16; CI, �0.06 to 0.39; n = 50/1292,
I2 = 65.3%, P = 0.13; Fig. 2).
In subgroup analyses of unmedicated de novo PD

patients compared with healthy controls, there were no
differences in the mean striatal binding (g = �0.18;
CI. �0.43 to 0.07; I2 = 19.8%; Fig. 2), caudate nucleus
binding (g = 0.43; CI, �0.06 to 0.92; I2 = 67.0%) or
putamen binding (g = �0.46; CI = �1.45 to 0.52,
I2 = 88.9%). The mean striatal binding was 2.7%
lower in medicated PD patients than in healthy controls
(g = 0.30; CI, 0.03–0.58; I2 = 68.6%; Fig. 2), and the
caudate nucleus binding was 10.0% lower (g = 0.80;
CI, 0.38–1.23; I2 = 73.8%), whereas there was no dif-
ference in the putamen (g = �0.23; CI, �0.58 to 0.13;
I2 = 65.8%). The effect sizes for D2R binding differed
between unmedicated and medicated patients in mean
striatal binding (P = 0.007).
Binding in the striatum contralateral to the predomi-

nant motor symptoms of PD was 2.8% higher than that
in the ipsilateral side (g = �0.19; CI, �0.26 to �0.11;
n = 27/475, I2 = 69.7%, P < 0.0001; Fig. 3). Twenty-
three of 27 samples showed higher binding values on
the contralateral side.
PD disease duration was an effect moderator for

striatal D2R binding. PD patients had higher binding
early in the disease, but the regression line crossed zero
at a disease duration of 4.36 years, after which PD
patients had lower binding values than healthy controls

(β = 0.13; CI, 0.06–0.21; P < 0.001; Fig. 4). A similar
moderator effect was observed for Hoehn and Yahr
stage, as striatal D2R binding was elevated in patients
with a Hoehn and Yahr stage score below 2.1 and
reduced in motorically more severely affected patients
(β = 0.52; CI, 0.17–0.86; P = 0.002) and for motor
UPDRS score (β = 0.04; CI, 0.00–0.08; P = 0.031) but
not for age of PD patients (β = 0.02; CI, �0.02 to
0.06; P = 0.28).

PSP and MSA
PSP patients had 26.5% lower striatal D2R binding

(g = 1.59; CI, 1.19–1.99; n = 6/89, I2 = 0%, P < 0.0001),
and MSA-P patients had 32.6% lower striatal D2R bind-
ing than healthy controls (g = 2.08; CI, 0.03–4.13; n = 4/
75, I2 = 75.6%, P = 0.001). PSP patients had 14.2%
lower striatal D2R binding (g = �0.99; CI, �1.65 to
�0.34; n = 11/204, I2 = 62.5%, P = 0.001), and MSA-P
patients had 21.8% lower striatal D2R binding
(g = �1.32; CI, �0.71 to �2.95; n = 12/221,
I2 = 63.1%, P < 0.001) than PD patients. There were no
differences in striatal (g = �0.10; CI, �0.52 to 0.33;
n = 8/122, I2 = 0%, P = 0.59), caudate (g = �0.07;
CI, �1.67 to 1.53; n = 4/55, I2 = 67.7%, P = 0.89), or
putamen (g = �0.16; CI, �0.88 to 0.56; n = 4/55,
I2 = 0%, P = 0.49) D2R binding between PSP and
MSA-P patients (Fig. S1).

Data Quality
Twelve studies scored 1–2 of 6 stars on the

Newcastle-Ottawa scale (Table S4). When these studies
were excluded from the analysis, the results remained
essentially the same except for the striatal D2R differ-
ence between unmedicated PD patients and healthy
controls, which became significant (higher binding in
PD; g = �0.34; CI, �0.59 to �0.09). There were no
differences in mean striatal effect sizes between PET
(25 studies, 27 samples) and SPECT (19 studies, 23
samples) studies (P = 0.27). Funnel plots with imputed
data points for the striatum in PD and PSP samples
suggested no significant publication bias with 0–1 nega-
tive studies missing (PD: Egger intercept P = 0.55).
One negative study was missing in MSA versus HC and
MSA versus PD analyses (Egger intercept P < 0.05), but
trim-and-fill–adjusted effect sizes remained essentially
the same, suggesting minimal impact of
publication bias.

Discussion

There are three primary results in this meta-analysis.
First, the pooled results demonstrate that there was ini-
tial upregulation of striatal D2Rs in PD patients, which
was reversed to downregulation on average 4.4 years
after motor symptom onset. Second, there was
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TABLE 1 Summary of included studies

Study Sitea Method Tracer Patients Scannerb

Baron 198619 PAR PET [76Br]bromospiperone PSP LETI prototype

Hägglund, 198720 UPP PET [11C]NMSP PD Scanditronix PC 382-3B

Rutgers, 198715 GRO PET [11C]NMSP PD —

Brücke, 199121 VIE SPECT [123I]IBZM PD Siemens Dual Rota ZLC37

Tatsch, 199122 MUN SPECT [123I]IBZM PD Siemens Rota II

Brooks, 19926 LON PET [11C]raclopride PDP, PSP, MSA CTI 931/08/12

Sawle, 199323 LON PET [11C]raclopride PD CTI 931/12/8

Shinotoh, 199324 CHI PET [11C]NMSP PD, MSA Three-ring PET system

Brücke, 199325 VIE SPECT [123I]IBZM PD Siemens Dual Rota ZLC37

Cordes, 199326 BER SPECT [123I]IBZM PD APEX 409, Elscint

Pizzolato, 199327 PAD SPECT [123I]IBZM PD —

Laulumaa, 199328 KUO SPECT [123I]IBZM PD Siemens Orbiter

van Royen, 199329 AMS SPECT [123I]IBZM PSP, MSA Strichman 810

Giobbe, 199330 TUR SPECT [123I]IBZM PD GE 400 T

Schwarz, 199431 MUN PET [11C]raclopride PD CTI 933/04–16

Hublin, 199432 HEL SPECT [123I]IBZM PD Picker DDC4096

Antonini, 19947 VIL PET [11C]raclopride PD CTI 933/04–16

Schulz 199433 TÜB SPECT [123I]IBZM PD, MSA Picker Digital Dyna

Antonini, 199534 VIL PET [11C]raclopride PD CTI 933/04–16

Buck, 199535 ZÜR SPECT [123I]IBZM PD, PSP Picker Prism 3000

Knable, 199516 BET SPECT [123I]IBZM PD Ceraspect

Nadeau, 199536 GAI SPECT [123I]IBZM PD Triad 88

Rinne, 199537 TKU PET [11C]raclopride PD ECAT 931/08–12

Pizzolato, 199538 PAD SPECT [123I]IBZM PD GE Starcam 400 AC

Cordes, 199639 BER SPECT [123I]lisuride PD —

Antonini, 199740 VIL PET [11C]raclopride PD CTI 933/04–16

Staffen, 19978 SAL SPECT [123I]IBZM PD Picker Prism 3000

Turjanski, 199741 LON PET [11C]raclopride PD CTI 931/�08/12

Pirker, 199742 VIE SPECT [123I]epidepride PD, MSA —

Schwarz, 199743 MUN SPECT [123I]IBZM PD Rota II Siemens

Antonini, 199744 VIL PET [11C]raclopride PD, MSA CTI 933/04–16

Wenning, 199817 INN SPECT [123I]IBZM PD Siemens Orbiter Digitrac ZLC

Hierholzer, 199845 BER SPECT [123I]IBZM PD, PSP, MSA Apex 409

Ichise, 199846 TOR SPECT [123I]IBF PD Prism 3000XP, Picker

Dentresangle, 199947 LYO PET [11C]raclopride PD TTV03 LETI

Samii, 19999 VAN PET [11C]raclopride PD ECAT 953B

Nagabeppu, 1999 KAG SPECT [123I]IBF PD, PSP, MSA —

Kaasinen, 200018 TKU PET [11C]raclopride PD ECAT 931/08–12

(Continues)
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consistent upregulation of D2Rs in the striatum contra-
lateral to the predominant motor symptoms in PD
patients. Third, both PSP and MSA patients clearly had
lower striatal D2R binding than PD patients despite
similar or even more profound loss of dopamine nerve

terminals, which is potentially important for
neuroimaging-based differential diagnostics.
A critical question is whether the downregulation of

striatal D2Rs seen in advanced PD patients was because
of disease progression or dopaminergic medication.

TABLE 1 Continued

Study Sitea Method Tracer Patients Scannerb

Hilker, 200148 COL PET [11C]raclopride PD ECAT EXACT HR

Prunier, 200149 TOU SPECT [123I]lisuride PD, PSP, MSA Helix Elscint

Kim, 200211 TOR SPECT [123I]IBF PD, PSP, MSA Prism 3000XP, Picker

Arnold, 200250 MUN SPECT [123I]IBZM PSP Siemens Rota II

Ghaemi, 200251 COL PET [11C]raclopride PD ECAT EXACT/ECAT EXACT HR

Oyanagi, 200252 KYO SPECT [123I]IBF PD, PSP Prism 3000 Picker

Hilker, 200353 COL PET [11C]raclopride PD ECAT EXACT HR

Schreckenberger, 200454 MAI PET [18F]fallypride PD ECAT EXACT

Scherfler, 200455 LON PET [11C]raclopride PD ECAT EXACT HR++

Seppi, 200456 INN SPECT [123I]IBZM PD, MSA ADAC VertexPlus

Plotkin, 200510 BER SPECT [123I]IBZM PD, PSP Multispect 3

Mishina, 200557 CHI PET [11C]raclopride PD HEADTOME V

Nakagawa, 200558 FUK PET [11C]raclopride PD, PSP, MSA ECAT EXACT HR+

Strafella, 200559 MON PET [11C]raclopride PD CTI-Siemens HR+

Hesse, 200660 LEI SPECT [123I]IBZM PD Ceraspect

Strafella, 200661 MON PET [11C]raclopride PD CTI/Siemens HR+

Verstappen, 200762 NIJ SPECT [123I]IBZM PD Multispect 2

Ribeiro, 200963 ORS PET [11C]raclopride PD ECAT EXACT HR+

Ishibashi, 201064 TOK PET [11C]raclopride PD SET-2400 W

Pifarre, 201065 BAR SPECT [123I]IBZM PD, PSP, MSA Siemens E-CAM

Lin, 201066 TAO SPECT [123I]IBZM PD, PSP Siemens E.CAM

Südmeyer, 201167 DÜS SPECT [123I]IBZM PD Prism 2000

Hellwig, 201268 FRE SPECT [123I]IBZM PD, PSP, MSA Siemens E.CAM

Hammesfahr, 201669 DÜS SPECT [123I]IBZM PD Prism 2000

Akamatsu, 201770 KOB PET [11C]raclopride PD Discovery 690 PET/CT

Mishina, 201771 KAN PET [11C]raclopride PD SET-2400 W

Politis, 201772 LON PET [11C]raclopride PD ECAT HR+

Stark, 201873 NAS PET [18F]fallypride PD GE Discovery STE PET/CT

Sacheli, 201874 VAN PET [11C]raclopride PD HRRT

[11C]NMSP, 3-N-[11C]methylspiperone; [123I]IBZM, [123I]-(S-)-2-hydroxy-3-iodo-6-methoxy-N([l-ethyl-2-pyrrolidyl]methyl)-benzamide.
aAMS, Amsterdam, The Netherlands; BAR, Barcelona, Spain; BER, Berlin, Germany; BET, Bethesda, MD USA; CHI, Chiba, Japan; COL, Cologne, Germany; DÜS,
Düsseldorf, Germany; FRE, Freiburg, Germany; FUK, Fukuoka, Japan; GAI, Gainesville, FL, USA; GRO, Groningen, The Netherlands; HEL, Helsinki, Finland; INN, Inns-
brück, Austria; LON, London, UK; LYO, Lyon, France; KAG, Kagoshima, Japan; KAN, Kanawaga, Japan; KOB, Kobe, Japan; KUO, Kuopio, Finland; KYO, Kyoto, Japan;
LEI, Leipzig, Germany; MAI, Mainz, Germany; MON, Montreal, QC, Canada; MUN, Munich, Germany; NAS, Nashville, TN, USA; NIJ, Nijmegen, The Netherlands;
ORS, Orsay, France; PAD, Padova, Italy; PAR, Paris, France; SAL, Salzburg, Austria; TAO, Taoyuan, Taiwan; TKU, Turku, Finland; TOK, Tokyo, Japan; TOR, Toronto,
ON, Canada; TOU, Tours, France; TUR, Turin, Italy; TÜB, Tübingen, Germany; UPP, Uppsala, Sweden; VAN, Vancouver, BC, Canada; VIE, Vienna, Austria; VIL,
Villigen, Switzerland; ZÜR, Zürich, Switzerland.
bScanner models written as they were reported in the original articles.

6 Movement Disorders, 2021

K A A S I N E N E T A L



There are neuroimaging results in DBS-treated patients
that support the hypothesis that receptor down-
regulation is a consequence of drug treatment, as the
downregulation seems to disappear in patients whose
medications are withdrawn after DBS implantation.4

There is also evidence indicating that changes in D1
versus D2 dopamine receptor density contribute to the
development of dyskinesia.75 Indeed, in the present
meta-analysis, both longer disease duration and phar-
macotherapy were associated with lower D2 receptor

binding in PD patients. Because there are practically no
unmedicated PD patients with disease duration longer
than 4 years, it is not possible to determine if the down-
regulation in advanced patients was from disease pro-
gression. Given that agonist-induced downregulation of
receptors has been described in a number of other cen-
tral neurotransmitter systems, such as 5-HT receptors,76

muscarinic acetylcholine receptors,77 AMPA receptors,78

and opioid receptors,79 the agonist-induced mechanism
seems likely in PD, a view that is supported by studies

FIG. 2. Forest plot of differences in striatal dopamine D2 receptor binding between PD patients and healthy controls. Red, samples with PD patients
treated with antiparkinsonian medications, mixed samples (medicated and unmedicated), or medication not reported; blue, samples with unmedicated
PD patients.
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with rodents demonstrating a reduction in D2Rs after con-
tinuous treatment with dopamine receptor agonists,80 as
well as findings in advanced PD patients withdrawn from
all medication following STN DBS.4 Although the

downregulation may be secondary to therapy, the consis-
tently higher D2R binding in the hemisphere contralateral
to the predominant symptoms of PD points to a regionally
specific mechanism and indicates that the increase in D2R
binding is associated with a decrease in presynaptic dopa-
mine function. This is a strong indicator of pathology-
driven changes in dopamine receptor density. As the
increase in contralateral binding does not seem to be
directly related to synaptic dopamine levels,18 it is possible
that the upregulation is a consequence of the loss of striatal
neuropil in PD.
Another aspect is the subregional differences in dopa-

mine receptor-binding characteristics in PD patients.
When the caudate nucleus and putamen were studied
separately in the present meta-analysis, PD patients
(early and advanced combined) showed lower binding
in the caudate than healthy subjects with no difference
observed in the putamen. This suggests relatively more
pronounced receptor loss in the caudate over the dis-
ease course of PD. It is of high importance to note that
executive cognitive deficits in early patients with PD
appear to be particularly associated with deficits in dor-
sal caudate dopaminergic function.81 Although associa-
tions between dopamine and cognitive measures should
be considered in the context of frontostriatothalamic
circuitry, caudate D2R activity seems to be especially

FIG. 3. Forest plot of D2R interhemispheric differences in PD patients. The analysis was carried out with studies that reported separate values for
striatal D2R binding in hemispheres contra- and ipsilateral to the predominant motor symptoms of PD. Note the higher contralateral binding in all but
4 samples. Red, samples with PD patients treated with antiparkinsonian medications, mixed samples (medicated and unmedicated), or medication not
reported; blue, samples with unmedicated PD patients.

FIG. 4. Association between effect size (Hedges’ g) and disease dura-
tion in PD patients. Negative effect sizes indicate receptor upregulation
in relation to healthy controls. The initial upregulation becomes down-
regulation 4.36 years after disease onset. Blue, unmedicated patient
samples; red, medicated patient samples. Circle size denotes
sample size.
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important for response inhibition and temporal organi-
zation of material together with motor performance.82

Unfortunately, only a few studies reported cognitive
measures in the present meta-analysis. Cognitive func-
tion in association with regional dopamine receptor sta-
tus should be a focus of a future meta-analysis.
Compared with PD, the loss of D2R function in PSP

and MSA was far more severe in the early stages. This
suggests that D2R imaging in PSP and MSA could have
some diagnostic value. However, in individual cases,
the relative changes in PD D2R binding characteristics
can be small, and the sensitivity/specificity of D2R
imaging in PD versus PSP/MSA differential diagnostics
is probably suboptimal. Furthermore, it cannot be
excluded that there is a similar albeit shorter D2R
upregulation phase in atypical parkinsonisms. If the
mechanism of receptor upregulation is compensation
for the loss of dopaminergic function, it could be
expected that the mechanism could extend to other
hypodopaminergic conditions, such as PSP and MSA,
but is less apparent, owing to the associated loss of
striatal projection neurons. In light of these uncer-
tainties, the use of fluorodeoxyglucose (FDG) PET,
MRI, or protein-specific tracers in the future are proba-
bly superior to D2R imaging in the differential diagno-
sis of atypical parkinsonisms.
A limitation of the present study is the lack of a suffi-

cient number of D1R studies. The conclusions are there-
fore only valid for D2Rs. However, from the viewpoint
of PD, the D2R family may be more relevant because
D2R-knockout mice are known to exhibit reduced spon-
taneous movements resembling the movement disorder in
PD and atypical parkinsonisms.83 This is in stark contrast
to D1R-knockout mice, which either appear to demon-
strate behavioral hyperactivity or no behavioral alter-
ations in movement.84,85 Therefore, the present results
should be interpreted to show dynamic changes in D2Rs,
and the effects could be very different for D1Rs.
To conclude, pooled functional neuroimaging data

show temporal and regional changes in dopamine
D2-like receptors in PD. The initial upregulation of
receptors reverses to steep downregulation, possibly
because of an agonist-induced effect. The contralateral
upregulation indicates that receptor binding increases
are mainly driven by neurodegeneration. Finally, the
dopamine receptor differences in PD compared with
atypical parkinsonisms may assist in the differential
diagnosis of patients with clinically uncertain parkinso-
nian syndromes, although other imaging modalities
(FDG or misfolded protein-specific PET, MRI) may be
preferable.
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