235 research outputs found

    Thematic mapper research in the earth sciences: Small scale patches of suspended matter and phytoplankton in the Elbe River Estuary, German Bight and Tidal Flats

    Get PDF
    A Thematic Mapper (TM) field experiment was followed by a data analysis to determine TM capabilities for analysis of suspended matter and phytoplankton. Factor analysis showed that suspended matter concentration, atmospheric scattering, and sea surface temperature can be retrieved as independent factors which determine the variation in the TM data over water areas. Spectral channels in the near infrared open the possibility of determining the Angstrom exponent better than for the coastal zone color scanner. The suspended matter distribution may then be calculated by the absolute radiance of channel 2 or 3 or the ratio of both. There is no indication of whether separation of chlorophyll is possible. The distribution of suspended matter and sea surface temperature can be observed with the expected fine structure. A good correlation between water depth and suspended matter distribution as found from ship data can now be analyzed for an entire area by the synoptic view of the TM scenes

    Comparative micromechanics of bushcricket ears with and without a specialized auditory fovea region in the crista acustica

    No full text
    In some insects and vertebrate species, the specific enlargement of sensory cell epithelium facilitates the perception of particular behaviourally relevant signals. The insect auditory fovea in the ear of the bushcricket Ancylecha fenestrata (Tettigoniidae: Phaneropterinae) is an example of such an expansion of sensory epithelium. Bushcricket ears developed in convergent evolution anatomical and functional similarities to mammal ears, such as travelling waves and auditory foveae, to process information by sound. As in vertebrate ears, sound induces a motion of this insect hearing organ (crista acustica), which can be characterized by its amplitude and phase response. However, detailed micromechanics in this bushcricket ear with an auditory fovea are yet unknown. Here, we fill this gap in knowledge for bushcricket, by analysing and comparing the ear micromechanics in Ancylecha fenestrata and a bushcricket species without auditory fovea (Mecopoda elongata, Tettigoniidae: Mecopodinae) using laser-Doppler vibrometry. We found that the increased size of the crista acustica, expanded by a foveal region in A. fenestrata, leads to higher mechanical amplitudes and longer phase delays in A. fenestrata male ears. Furthermore, area under curve analyses of the organ oscillations reveal that more sensory units are activated by the same stimuli in the males of the auditory fovea-possessing species A. fenestrata. The measured increase of phase delay in the region of the auditory fovea supports the conclusion that tilting of the transduction site is important for the effective opening of the involved transduction channels. Our detailed analysis of sound-induced micromechanics in this bushcricket ear demonstrates that an increase of sensory epithelium with foveal characteristics can enhance signal detection and may also improve the neuronal encoding.Introduction. - Material and methods (animals and preparation, micro-computed tomography, laser-doppler vibrometry and sound stimulation, data analysis and statistics). - Results. - Discussio

    On the momentum forcing of a large-scale sea-ice model

    No full text
    A large-scale sea-ice - oceanic mixed-layer model for the Southern Ocean is forced with daily atmospheric fields from operational numerical weather prediction analyses. The strength of the atmospheric forcing is modified considering atmospheric surface-layer physics, which is itself directly dependent on the instantaneous sea-ice condition provided by the sea-ice model. In earlier applications, the atmospheric drag on sea ice was computed from the local momentum transfer over ice. In the present study, this is replaced by a large-scale momentum flux, which is characterized by a large-scale stability function and a large-scale roughness length. The large-scale roughness length depends on the local skin drags and on the form drag, where the latter is given as a function of the ice-plus-snow free-board and the ice concentration, both provided by the sea-ice model. The thermodynamic part of the calculation is given by the local fluxes, which depend on the local stability of the atmospheric surface layer. This, physically more reasonable, description of the large-scale dynamic forcing generally leads to an increase of the momentum transfer via an increase of the roughness length and a decrease of the stability in the atmospheric surface layer. Finally, this yields improved model results, especially in terms of a more dynamic pattern of the ice-thickness distribution

    Spawning of Threatened Barred Galaxias, Galaxias fuscus (Teleostei: Galaxiidae)

    Get PDF
    Barred galaxias Galaxias fuscus is an endangered freshwater ïŹsh endemic to south-eastern Australia. Little is known of the species’ ecology. We investigated spawning biology of G. fuscus in three headwater streams and found spawning to occur mid-August to late September when photoperiod was 10 h 39 min – 12 h 25 min. Spawning sites were in fresh (range 35.3 – 56.6 EC, mean 44.7 EC), slightly acidic (range 5.7 – 7.1 pH, mean 5.9 pH), moderate to fast ïŹ‚owing (range 0.4 – 2.0 m/s, mean 1.0 m/s), shallow (range 70 – 310 mm, mean 174 mm), well oxygenated (range 10.8 – 12.4 mg/l, mean 11.3mg/l), clear (range 1.2 – 6.3 NTU, mean 3.8 NTU), cool waters (range 8.4 – 10 °C, mean 9.1°C) immediately upstream of pools. Multi-layered clusters of up to 218 eggs were generally adhered close to the stream bed on the downstream side of cobbles greater than 180 mm diameter

    Microscopic Theory of Heterogeneity and Non-Exponential Relaxations in Supercooled Liquids

    Full text link
    Recent experiments and computer simulations show that supercooled liquids around the glass transition temperature are "dynamically heterogeneous" [1]. Such heterogeneity is expected from the random first order transition theory of the glass transition. Using a microscopic approach based on this theory, we derive a relation between the departure from Debye relaxation as characterized by the ÎČ\beta value of a stretched exponential response function ϕ(t)=e−(t/τKWW)ÎČ\phi(t) =e^{-(t/ \tau_{KWW})^{\beta}}, and the fragility of the liquid. The ÎČ\beta value is also predicted to depend on temperature and to vanish as the ideal glass transition is approached at the Kauzmann temperature.Comment: 4 pages including 3 eps figure

    Towards harmonizing natural resources as an area of protection in life cycle impact assessment

    Get PDF
    Purpose. In this paper, we summarize the discussion and present the findings of an expert group effort under the umbrella of the United Nations Environment Programme (UNEP)/Society of Environmental Toxicology and Chemistry (SETAC) Life Cycle Initiative proposing natural resources as an Area of Protection (AoP) in Life Cycle Impact Assessment (LCIA). Methods: As a first step, natural resources have been defined for the LCA context with reference to the overall UNEP/SETAC Life Cycle Impact Assessment (LCIA) framework. Second, existing LCIA methods have been reviewed and discussed. The reviewed methods have been evaluated according to the considered type of natural resources and their underlying principles followed (use-to-availability ratios, backup technology approaches, or thermodynamic accounting methods). Results and discussion. There is currently no single LCIA method available that addresses impacts for all natural resource categories, nor do existing methods and models addressing different natural resource categories do so in a consistent way across categories. Exceptions are exergy and solar energy-related methods, which cover the widest range of resource categories. However, these methods do not link exergy consumption to changes in availability or provisioning capacity of a specific natural resource (e.g., mineral, water, land etc.). So far, there is no agreement in the scientific community on the most relevant type of future resource indicators (depletion, increased energy use or cost due to resource extraction, etc.). To address this challenge, a framework based on the concept of stock/fund/flow resources is proposed to identify, across natural resource categories, whether depletion/dissipation (of stocks and funds) or competition (for flows) is the main relevant aspect. Conclusions. An LCIA method—or a set of methods—that consistently address all natural resource categories is needed in order to avoid burden shifting from the impact associated with one resource to the impact associated with another resource. This paper is an important basis for a step forward in the direction of consistently integrating the various natural resources as an Area of Protection into LCA

    Wet-spinnability and crosslinked fibre properties of two collagen polypeptides with varied molecular weight

    Get PDF
    The formation of naturally-derived materials with wet stable fibrous architectures is paramount in order to mimic the features of tissues at the molecular and microscopic scale. Here, we investigated the formation of wet-spun fibres based on collagen-derived polypeptides with comparable chemical composition and varied molecular weight. Gelatin and hydrolysed fish collagen (HFC) were selected as widely-available linear amino-acidic chains of high and low molecular weight, respectively, and functionalised in the wet-spun fibre state in order to preserve the material geometry in physiological conditions. Wet-spun fibre diameter and morphology were dramatically affected depending on the polypeptide molecular weight, wet-spinning solvent (i.e. 2,2,2-Trifluoroethanol and dimethyl sulfoxide) and coagulating medium (i.e. acetone and ethanol), resulting in either bulky or porous internal geometry. Dry-state tensile moduli were significantly enhanced in gelatin and HFC samples following covalent crosslinking with activated 1,3-phenylenediacetic acid (Ph) (E: 726 ± 43 ‒ 844 ± 85 MPa), compared to samples crosslinked via intramolecular carbodiimide-mediated condensation reaction (E: 588 ± 38 MPa). Resulting fibres displayed a dry diameter in the range of 238±18–355±28 ÎŒm and proved to be mechanically-stable (E: 230 kPa) following equilibration with PBS, whilst a nearly-complete degradation was observed after 5-day incubation in physiological conditions

    Involvement of lactate and pyruvate in the anti-inflammatory effects exerted by voluntary activation of the sympathetic nervous system

    Get PDF
    We recently demonstrated that the sympathetic nervous system can be voluntarily activated following a training program consisting of cold exposure, breathing exercises, and meditation. This resulted in profound attenuation of the systemic inflammatory response elicited by lipopolysaccharide (LPS) administration. Herein, we assessed whether this training program affects the plasma metabolome and if these changes are linked to the immunomodulatory effects observed. A total of 224 metabolites were identified in plasma obtained from 24 healthy male volunteers at six timepoints, of which 98 were significantly altered following LPS administration. Effects of the training program were most prominent shortly after initiation of the acquired breathing exercises but prior to LPS administration, and point towards increased activation of the Cori cycle. Elevated concentrations of lactate and pyruvate in trained individuals correlated with enhanced levels of anti-inflammatory interleukin (IL)-10. In vitro validation experiments revealed that co-incubation with lactate and pyruvate enhances IL-10 production and attenuates the release of pro-inflammatory IL-1ÎČ and IL-6 by LPS-stimulated leukocytes. Our results demonstrate that practicing the breathing exercises acquired during the training program results in increased activity of the Cori cycle. Furthermore, this work uncovers an important role of lactate and pyruvate in the anti-inflammatory phenotype observed in trained subjects.</p

    Metabolomics and lipidomics reveal perturbation of sphingolipid metabolism by a novel anti-trypanosomal 3-(oxazolo[4,5-b]pyridine-2-yl)anilide

    Get PDF
    Introduction: Trypanosoma brucei is the causative agent of human African trypanosomiasis, which is responsible for thousands of deaths every year. Current therapies are limited and there is an urgent need to develop new drugs. The anti-trypanosomal compound, 3-(oxazolo[4,5-b]pyridine-2-yl)anilide (OXPA), was initially identified in a phenotypic screen and subsequently optimized by structure–activity directed medicinal chemistry. It has been shown to be non-toxic and to be active against a number of trypanosomatid parasites. However, nothing is known about its mechanism of action. Objective: Here, we have utilized an untargeted metabolomics approach to investigate the biochemical effects and potential mode of action of this compound in T. brucei. Methods: Total metabolite extracts were analysed by HILIC-chromatography coupled to high resolution mass spectrometry. Results: Significant accumulation of ceramides was observed in OXPA-treated T. brucei. To further understand drug-induced changes in lipid metabolism, a lipidomics method was developed which enables the measurement of hundreds of lipids with high throughput and precision. The application of this LC–MS based approach to cultured bloodstream-form T. brucei putatively identified over 500 lipids in the parasite including glycerophospholipids, sphingolipids and fatty acyls, and confirmed the OXPA-induced accumulation of ceramides. Labelling with BODIPY-ceramide further confirmed the ceramide accumulation following drug treatment. Conclusion: These findings clearly demonstrate perturbation of ceramide metabolism by OXPA and indicate that the sphingolipid pathway is a promising drug target in T. brucei.No Full Tex
    • 

    corecore