61 research outputs found

    Metallicity Effects in PDRs

    Full text link
    Almost all properties of a photodissociation region (PDR) depend on its metallicity. The heating and cooling efficiencies that determine the temperature of the gas and dust, the dust composition, as well as the elemental abundances that influence the chemical structure of the PDR are just three examples that demonstrate the importance of metallicity effects in PDRs. PDRs are often associated with sites of star formation. If we want to understand the star formation history of our own Galaxy and of distant low-metallicity objects we need to understanding how metallicity acts on PDR physics and chemistry.Comment: 7 pages, 5 figures, to appear in proceedings of "Far-Infrared and Submillimeter Emission of the Interstellar Medium", EAS Publication Series, Bad Honnef, November 2007, Eds. C. Kramer, S. Aalto, R. Simo

    Excitation and abundance study of CO+ in the interstellar medium

    Full text link
    Observations of CO+ suggest column densities on the order 10^12 cm^-2 that can not be reproduced by many chemical models. CO+ is more likely to be destroyed than excited in collisions with hydrogen. An anomalous excitation mechanism may thus have to be considered when interpreting CO^+ observations. Chemical models are used to perform a parameter study of CO^+ abundances. Line fluxes are calculated for N(CO+)=10^12 cm^-2 and different gas densities and temperatures using a non-LTE escape probability method. The chemical formation and destruction rates are considered explicitly in the detailed balance equations of the radiative transfer. In addition, the rotational levels of CO+ are assumed to be excited upon chemical formation according to a formation temperature. It is found, that chemical models are generally able to produce high fractional CO+ abundances (x(CO+) =10^-10). In a far-ultraviolet (FUV) dominated environment, however, high abundances of CO+ are only produced in regions with a Habing field G0 > 100 and T(kin) > 600 K, posing a strong constraint on the gas temperature. For gas densities >10^6 cm^-3 and temperatures > 600 K, the combination of chemical and radiative transfer analysis shows little effect on intensities of CO+ lines with upper levels N_up <= 3. Significantly different line fluxes are calculated with an anomalous excitation mechanism, however, for transitions with higher upper levels and densities >10^6 cm ^ -3. The Herschel Space Observatory is able to reveal such effects in the terahertz wavelength regime. Ideal objects to observe are protoplanetary disks with densities 10^6 cm^-3. It is finally suggested that the CO+ chemistry may be well understood and that the abundances observed so far can be explained with a high enough gas temperature and a proper geometry.Comment: 9 pages, 7 figure

    The ionized and hot gas in M17 SW: SOFIA/GREAT THz observations of [C II] and 12CO J=13-12

    Full text link
    With new THz maps that cover an area of ~3.3x2.1 pc^2 we probe the spatial distribution and association of the ionized, neutral and molecular gas components in the M17 SW nebula. We used the dual band receiver GREAT on board the SOFIA airborne telescope to obtain a 5'.7x3'.7 map of the 12CO J=13-12 transition and the [C II] 158 um fine-structure line in M17 SW and compare the spectroscopically resolved maps with corresponding ground-based data for low- and mid-J CO and [C I] emission. For the first time SOFIA/GREAT allow us to compare velocity-resolved [C II] emission maps with molecular tracers. We see a large part of the [C II] emission, both spatially and in velocity, that is completely non-associated with the other tracers of photon-dominated regions (PDR). Only particular narrow channel maps of the velocity-resolved [C II] spectra show a correlation between the different gas components, which is not seen at all in the integrated intensity maps. These show different morphology in all lines but give hardly any information on the origin of the emission. The [C II] 158 um emission extends for more than 2 pc into the M17 SW molecular cloud and its line profile covers a broader velocity range than the 12CO J=13-12 and [C I] emissions, which we interpret as several clumps and layers of ionized carbon gas within the telescope beam. The high-J CO emission emerges from a dense region between the ionized and neutral carbon emissions, indicating the presence of high-density clumps that allow the fast formation of hot CO in the irradiated complex structure of M17 SW. The [C II] observations in the southern PDR cannot be explained with stratified nor clumpy PDR models.Comment: 4 pages, 4 figures, letter accepted for the SOFIA/GREAT A&A 2012 special issu

    AcDc - A new code for the NLTE spectral analysis of accretion discs: application to the helium CV AM CVn

    Full text link
    We present a recently developed code for detailed NLTE calculations of accretion disc spectra of cataclysmic variables and compact X-ray binaries. Assuming a radial structure of a standard alpha-disc, the disc is divided into concentric rings. For each disc ring the solution of the radiation transfer equation and the structure equations, comprising the hydrostatic and radiative equilibrium, the population of the atomic levels as well as charge and particle conservation, is done self-consistently. Metal-line blanketing and irradiation by the central object are taken into account. As a first application, we show the influence of different disc parameters on the disc spectrum for the helium cataclysmic variable AM CVn.Comment: 7 pages, 11 figures to be published in A&

    Hydrostatic photoionization models of the Orion Bar

    Full text link
    Due to its proximity to the Earth and its nearly edge-on geometry, the Orion Bar provides an excellent testbed for detailed models of the structure of HII regions and the surrounding photon-dominated regions. In the present study, a self-consistent model of the structure of the Orion Nebula in the vicinity of the Bar is built under the assumption of approximate ionization, thermal, and hydrostatic equilibrium. It is found that a fairly simple geometry is able to describe the surface brightness profiles of the emission lines tracing the ionized HII region with a remarkable accuracy, independent of the prescription adopted to set the magnetic field or the population of cosmic rays. Although we consider different scenarios for these non-thermal components, none of the models is able to provide a fully satisfactory match to the observational data for the atomic layer, and the predicted column densities of several molecular species are always well above the measured abundances. Contrary to previous studies, we conclude that a more elaborate model is required in order to match all the available data.Comment: 11 pages, 6 figures, accepted for publication in MNRA

    On the Relationship Between Molecular Hydrogen and Carbon Monoxide Abundances in Molecular Clouds

    Full text link
    The most usual tracer of molecular gas is line emission from CO. However, the reliability of that tracer has long been questioned in environments different from the Milky Way. We study the relationship between H2 and CO abundances using a fully dynamical model of magnetized turbulence coupled to a chemical network simplified to follow only the dominant pathways for H2 and CO formation and destruction, and including photodissociation using a six-ray approximation. We find that the abundance of H2 is primarily determined by the amount of time available for its formation, which is proportional to the product of the density and the metallicity, but insensitive to photodissociation. Photodissociation only becomes important at extinctions under a few tenths of a visual magnitude, in agreement with both observational and prior theoretical work. On the other hand, CO forms quickly, within a dynamical time, but its abundance depends primarily on photodissociation, with only a weak secondary dependence on H2 abundance. As a result, there is a sharp cutoff in CO abundance at mean visual extinctions A_V < 3. At lower values of A_V we find that the ratio of H2 column density to CO emissivity X_CO is proportional to A_V^(-3.5). This explains the discrepancy observed in low metallicity systems between cloud masses derived from CO observations and other techniques such as infrared emission. Our work predicts that CO-bright clouds in low metallicity systems should be systematically larger or denser than Milky Way clouds, or both. Our results further explain the narrow range of observed molecular cloud column densities as a threshold effect, without requiring the assumption of virial equilibrium.Comment: 16 pages, 11 figures. Updated to match version accepted by MNRA
    • …
    corecore