14 research outputs found

    Creutzfeldt-Jakob disease after COVID-19: infection-induced prion protein misfolding? A case report

    Get PDF
    Creutzfeldt-Jakob disease (CJD) is a rare, fatal disease presenting with rapidly progressive neurological deficits caused by the accumulation of a misfolded form (PrPSc) of prion protein (PrPc). Coronavirus disease 2019 (COVID-19) is a primarily respiratory syndrome caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2); many diverse neurological complications have been observed after COVID-19. We describe a young patient developing CJD two months after mild COVID-19. Presenting symptoms were visuospatial deficits and ataxia, evolving into a bedridden state with preserved consciousness and diffuse myoclonus. Diagnostic work-up was suggestive of CJD. The early age of onset and the short interval between respiratory and neurological symptoms might suggest a causal relationship: a COVID-19-related neuroinflammatory state may have induced the misfolding and subsequent aggregation of PrPSc. The present case emphasizes the link between neuroinflammation and protein misfolding. Further studies are needed to establish the role of SARS-CoV-2 as an initiator of neurodegeneration

    Changes in gene expression of DOR and other thyroid hormone receptors in rat liver during acute-phase response

    Get PDF
    Non-thyroidal illness is characterized by low tri-iodothyronine (T3) serum level under acute-phase conditions. We studied hepatic gene expression of the newly identified thyroid hormone receptor (TR) cofactor DOR/TP53INP2 together with TRs in a rat model of aseptic abscesses induced by injecting intramuscular turpentine-oil into each hind limb. A fast (4-6 h) decrease in the serum level of free thyroxine and free T3 was observed. By immunohistology, abundant DOR protein expression was detected in the nuclei of hepatocytes and ED-1+ (mononuclear phagocytes), CK-19+ (biliary cells), and SMA+ (mesenchymal cells of the portal tract) cells. DOR signal was reduced with a minimum at 6-12 h after the acute-phase reaction (APR). Immunohistology also showed a similar pattern of protein expression in TRα1 but without a significant change during APR. Transcripts specific for DOR, nuclear receptor co-repressor 1 (NCoR-1), and TRβ1 were down-regulated with a minimum at 6-12 h, whereas expression for TRα1 and TRα2 was slightly and significantly up-regulated, respectively, with a maximum at 24 h after APR was initiated. In cultured hepatocytes, acute-phase cytokines interleukin-1β (IL-1β) and IL-6 down-regulated DOR and TRβ1 at the mRNA level. Moreover, gene expression of DOR and TRs (TRα1, TRα2, and TRβ1) was up-regulated in hepatocytes by adding T3 to the culture medium; this up-regulation was almost completely blocked by treating the cells with IL-6. Thus, TRβ1, NCoR-1, and the recently identified DOR/TP53INP2 are abundantly expressed and down-regulated in liver cells during APR. Their down-regulation is attributable to the decreased serum level of thyroid hormones and most probably also to the direct action of the main acute-phase cytokines

    Analysis of RNA Expression Profiles Identifies Dysregulated Vesicle Trafficking Pathways in Creutzfeldt-Jakob Disease

    Get PDF
    Functional genomics applied to the study of RNA expression profiles identified several abnormal molecular processes in experimental prion disease. However, only a few similar studies have been carried out to date in a naturally occurring human prion disease. To better characterize the transcriptional cascades associated with sporadic Creutzfeldt-Jakob disease (sCJD), the most common human prion disease, we investigated the global gene expression profile in samples from the frontal cortex of 10 patients with sCJD and 10 non-neurological controls by microarray analysis. The comparison identified 333 highly differentially expressed genes (hDEGs) in sCJD. Functional enrichment Gene Ontology analysis revealed that hDEGs were mainly associated with synaptic transmission, including GABA (q value = 0.049) and glutamate (q value = 0.005) signaling, and the immune/inflammatory response. Furthermore, the analysis of cellular components performed on hDEGs showed a compromised regulation of vesicle-mediated transport with mainly up-regulated genes related to the endosome (q value = 0.01), lysosome (q value = 0.04), and extracellular exosome (q value < 0.01). A targeted analysis of the retromer core component VPS35 (vacuolar protein sorting-associated protein 35) showed a down-regulation of gene expression (p value= 0.006) and reduced brain protein levels (p value= 0.002). Taken together, these results confirm and expand previous microarray expression profile data in sCJD. Most significantly, they also demonstrate the involvement of the endosomal-lysosomal system. Since the latter is a common pathogenic pathway linking together diseases, such as Alzheimer’s and Parkinson’s, it might be the focus of future studies aimed to identify new therapeutic targets in neurodegenerative diseases

    MicroRNA 146a (miR-146a) Is Over-Expressed during Prion Disease and Modulates the Innate Immune Response and the Microglial Activation State

    Get PDF
    Increasing evidence supports the involvement of microRNAs (miRNAs) in inflammatory and immune processes in prion neuropathogenesis. MiRNAs are small, non-coding RNA molecules which are emerging as key regulators of numerous cellular processes. We established miR-146a over-expression in prion-infected mouse brain tissues concurrent with the onset of prion deposition and appearance of activated microglia. Expression profiling of a variety of central nervous system derived cell-lines revealed that miR-146a is preferentially expressed in cells of microglial lineage. Prominent up-regulation of miR-146a was evident in the microglial cell lines BV-2 following TLR2 or TLR4 activation and also EOC 13.31 via TLR2 that reached a maximum 24–48 hours post-stimulation, concomitant with the return to basal levels of transcription of induced cytokines. Gain- and loss-of-function studies with miR-146a revealed a substantial deregulation of inflammatory response pathways in response to TLR2 stimulation. Significant transcriptional alterations in response to miR-146a perturbation included downstream mediators of the pro-inflammatory transcription factor, nuclear factor-kappa B (NF-κB) and the JAK-STAT signaling pathway. Microarray analysis also predicts a role for miR-146a regulation of morphological changes in microglial activation states as well as phagocytic mediators of the oxidative burst such as CYBA and NOS3. Based on our results, we propose a role for miR-146a as a potent modulator of microglial function by regulating the activation state during prion induced neurodegeneration

    Biomarkers in chronic adult hydrocephalus

    Get PDF
    Awareness of the importance of chronic adult hydrocephalus has been raised again with the recent emergence of epidemiological studies. It is estimated that between 5 and 10% of patients suffering from dementia might, in fact, have chronic hydrocephalus. Although, surgical diversion of the cerebrospinal fluid (CSF) represents the only known procedure able to treat the symptoms of this condition, the selection of surgical patients has always been problematic. In the last 40 years, we have become wiser in using appropriate diagnostic tests for the selection of these patients; however, the area of biological markers has so far been overlooked in this condition, in contrast to that for other neurodegenerative disorders and dementias. Biomarkers are biological substances that may be used to indicate either the onset or the presence, and the progression of a clinical condition, being closely linked to its pathophysiology. In such a setting they might assist in the more appropriate selection of patients for shunt surgery. In this article, we have reviewed research carried out in the last 25 years regarding the identification of serum and CSF biomarkers for chronic hydrocephalus, discussed the potential for each one, and finally discussed the limitations for use, as well as future directions and possibilities in this field. It is concluded that tumour-necrosis factor, tau protein, lactate, sulfatide and neurofilament triple protein are the most promising CSF markers for chronic hydrocephalus. At present however, none of these meet the criteria required to justify a change clinical practice. In the future, collaborative multi-centre projects will be needed to obtain more substantial data that overcome the problems that arise from small individual and uncoordinated studies

    Microbial exposures in infancy predict levels of the immunoregulatory cytokine interleukin-4 in filipino young adults

    Get PDF
    Infancy represents a window of development during which long-term immunological functioning can be influenced. In this study, we evaluate proxies of microbial exposures in infancy as predictors of interleukin-4 (IL-4) in young adulthood. Interleukin-4 (IL-4) is an immunoregulatory cytokine that plays a role in the pathogenesis of atopic and allergic disease

    Cross-linking cellular prion protein induces neuronal type 2-like hypersensitivity

    Get PDF
    Background: Previous reports identified proteins associated with ‘apoptosis’ following cross-linking PrPC with motif-specific anti-PrP antibodies in vivo and in vitro. The molecular mechanisms underlying this IgG-mediated neurotoxicity and the role of the activated proteins in the apoptotic pathways leading to neuronal death has not been properly defined. Previous reports implicated a number of proteins, including apolipoprotein E, cytoplasmic phospholipase A2, prostaglandin and calpain with antiPrP antibody-mediated ‘apoptosis’, however, these proteins are also known to play an important role in allergy. In this study, we investigated whether cross-linking PrPC with anti-PrP antibodies stimulates a neuronal allergenic response. Methods: Initially, we predicted the allergenicity of the epitope sequences associated with ‘neurotoxic’ anti-PrP antibodies using allergenicity prediction servers. We then investigated whether anti-PrP antibody treatment of mouse primary neurons (MPN), neuroblastoma cells (N2a) and microglia (N11) cell lines lead to a neuronal allergenic response. Results: In-Silico studies showed that both tail- and globular-epitopes were allergenic. Specifically, binding regions that contain epitopes for previously reported ‘neurotoxic’ antibodies such as ICSM18 (146-159), ICSM35 (91-110), POM 1 (138-147) and POM 3 (95-100) lead to activation of allergenic related proteins. Following direct application of antiPrPC antibodies on N2a cells, we identified 4 neuronal allergenic-related proteins when compared with untreated cells. Furthermore, we identified 8 neuronal allergenic-related proteins following treatment of N11 cells with anti-PrPC antibodies prior to co-culture with N2a cells when compared with untreated cells. Antibody treatment of MPN or MPN co-cultured with antibody-treated N11 led to identifying 10 and 7 allergenic-related proteins when compared with untreated cells. However, comparison with 3F4 antibody treatment revealed 5 and 4 allergenic-related proteins respectively. Of importance, we showed that the allergenic effects triggered by the anti-PrP antibodies were more potent when antibody-treated microglia were co-cultured with the neuroblastoma cell line. Finally, co-culture of N2a or MPN with N11-treated with anti-PrP antibodies resulted in significant accumulation of NO and IL6 but not TNF-a in the cell culture media supernatant. Conclusions: This study showed for the first time that anti-PrP antibody binding to PrPC triggers a neuronal hypersensitivity response and highlights the important role of microglia in triggering an IgG-mediated neuronal hypersensitivity response. Moreover, this study provides an important impetus for including allergenic assessment of therapeutic antibodies for neurodegenerative disorders to derive safe and targeted biotherapeutics

    Heterogeneity of Microglial Activation in the Innate Immune Response in the Brain

    Get PDF
    The immune response in the brain has been widely investigated and while many studies have focused on the proinflammatory cytotoxic response, the brain’s innate immune system demonstrates significant heterogeneity. Microglia, like other tissue macrophages, participate in repair and resolution processes after infection or injury to restore normal tissue homeostasis. This review examines the mechanisms that lead to reduction of self-toxicity and to repair and restructuring of the damaged extracellular matrix in the brain. Part of the resolution process involves switching macrophage functional activation to include reduction of proinflammatory mediators, increased production and release of anti-inflammatory cytokines, and production of cytoactive factors involved in repair and reconstruction of the damaged brain. Two partially overlapping and complimentary functional macrophage states have been identified and are called alternative activation and acquired deactivation. The immunosuppressive and repair processes of each of these states and how alternative activation and acquired deactivation participate in chronic neuroinflammation in the brain are discussed

    Immunogenicity and immune function of the cellular prion protein.

    Get PDF
    Prion protein (PrP) is the only factor known to be essential in the pathogenesis of the transmissible spongiform encephalopathies (TSEs) or prion diseases. The cellular isoform (PrPc), a GPI-anchored sialoglycoprotein of unknown function, has an identical primary structure to the disease-associated conformer (PrPSc). Thus, animals are tolerant to PrPSc and TSEs do not trigger a classical immune response. Vaccine development for human TSEs requires elucidation of the immunodominant human T cell epitopes within PrP. Further, successful immunotherapy requires that the function of PrPc in lymphocytes is understood, as therapeutic targeting of prion protein risks interfering with immune function. Peripheral blood leukocytes from healthy donors were cultured with PrP sequence peptides to elicit proliferative and cytokine responses. Responses were seen to peptides clustered around the position 129 polymorphism and the C-terminus, in accordance with a predictive algorithm. The substitution of methionine by valine at position 129 altered both epitope immunogenicity and cytokine profile. Studies in murine T cell activation models demonstrated transcriptional and late surface protein upregulation of PrPc. Memory T cells expressed higher PrPc levels than naive cells and there was also a strong correlation at both protein and transcriptional levels between expression of PrPc and the regulatory T cell marker, Foxp3. Embryonic deletion of Prnp did not lead to deficits in T cell conjugation, proliferation or cytokine production, although memory cell numbers were slightly reduced. In PrP*7" mice regulatory T cells developed normally but may have enhanced suppressor function. However, neither PrP ablation nor anti-PrP monoclonal antibodies altered the phenotype of T cell mediated autoimmune disease. These findings demonstrate that tolerance to PrP is not complete in humans and raise the prospect of generating protective immunity through vaccination. However, PrPc is a potentially important memory, regulatory and T cell activation antigen, therapeutic disruption of which may precipitate immunopathology
    corecore