1,137 research outputs found

    Field measurements of trace gases and aerosols emitted by peat fires in Central Kalimantan, Indonesia, during the 2015 El Nino

    Get PDF
    Abstract. Peat fires in Southeast Asia have become a major annual source of trace gases and particles to the regional–global atmosphere. The assessment of their influence on atmospheric chemistry, climate, air quality, and health has been uncertain partly due to a lack of field measurements of the smoke characteristics. During the strong 2015 El Niño event we deployed a mobile smoke sampling team in the Indonesian province of Central Kalimantan on the island of Borneo and made the first, or rare, field measurements of trace gases, aerosol optical properties, and aerosol mass emissions for authentic peat fires burning at various depths in different peat types. This paper reports the trace gas and aerosol measurements obtained by Fourier transform infrared spectroscopy, whole air sampling, photoacoustic extinctiometers (405 and 870 nm), and a small subset of the data from analyses of particulate filters. The trace gas measurements provide emission factors (EFs; grams of a compound per kilogram biomass burned) for up to  ∼  90 gases, including CO2, CO, CH4, non-methane hydrocarbons up to C10, 15 oxygenated organic compounds, NH3, HCN, NOx, OCS, HCl, etc. The modified combustion efficiency (MCE) of the smoke sources ranged from 0.693 to 0.835 with an average of 0.772 ± 0.053 (n  =  35), indicating essentially pure smoldering combustion, and the emissions were not initially strongly lofted. The major trace gas emissions by mass (EF as g kg−1) were carbon dioxide (1564 ± 77), carbon monoxide (291 ± 49), methane (9.51 ± 4.74), hydrogen cyanide (5.75 ± 1.60), acetic acid (3.89 ± 1.65), ammonia (2.86 ± 1.00), methanol (2.14 ± 1.22), ethane (1.52 ± 0.66), dihydrogen (1.22 ± 1.01), propylene (1.07 ± 0.53), propane (0.989 ± 0.644), ethylene (0.961 ± 0.528), benzene (0.954 ± 0.394), formaldehyde (0.867 ± 0.479), hydroxyacetone (0.860 ± 0.433), furan (0.772 ± 0.035), acetaldehyde (0.697 ± 0.460), and acetone (0.691 ± 0.356). These field data support significant revision of the EFs for CO2 (−8 %), CH4 (−55 %), NH3 (−86 %), CO (+39 %), and other gases compared with widely used recommendations for tropical peat fires based on a lab study of a single sample published in 2003. BTEX compounds (benzene, toluene, ethylbenzene, xylenes) are important air toxics and aerosol precursors and were emitted in total at 1.5 ± 0.6 g kg−1. Formaldehyde is probably the air toxic gas most likely to cause local exposures that exceed recommended levels. The field results from Kalimantan were in reasonable agreement with recent lab measurements of smoldering Kalimantan peat for “overlap species,” lending importance to the lab finding that burning peat produces large emissions of acetamide, acrolein, methylglyoxal, etc., which were not measurable in the field with the deployed equipment and implying value in continued similar efforts. The aerosol optical data measured include EFs for the scattering and absorption coefficients (EF Bscat and EF Babs, m2 kg−1 fuel burned) and the single scattering albedo (SSA) at 870 and 405 nm, as well as the absorption Ångström exponents (AAE). By coupling the absorption and co-located trace gas and filter data we estimated black carbon (BC) EFs (g kg−1) and the mass absorption coefficient (MAC, m2 g−1) for the bulk organic carbon (OC) due to brown carbon (BrC). Consistent with the minimal flaming, the emissions of BC were negligible (0.0055 ± 0.0016 g kg−1). Aerosol absorption at 405 nm was  ∼  52 times larger than at 870 nm and BrC contributed  ∼  96 % of the absorption at 405 nm. Average AAE was 4.97 ± 0.65 (range, 4.29–6.23). The average SSA at 405 nm (0.974 ± 0.016) was marginally lower than the average SSA at 870 nm (0.998 ± 0.001). These data facilitate modeling climate-relevant aerosol optical properties across much of the UV/visible spectrum and the high AAE and lower SSA at 405 nm demonstrate the dominance of absorption by the organic aerosol. Comparing the Babs at 405 nm to the simultaneously measured OC mass on filters suggests a low MAC ( ∼  0.1) for the bulk OC, as expected for the low BC/OC ratio in the aerosol. The importance of pyrolysis (at lower MCE), as opposed to glowing (at higher MCE), in producing BrC is seen in the increase of AAE with lower MCE (r2 =  0.65)

    Application of Probability Methods to Assess Crash Modeling Uncertainty

    Get PDF
    Full-scale aircraft crash simulations performed with nonlinear, transient dynamic, finite element codes can incorporate structural complexities such as: geometrically accurate models; human occupant models; and advanced material models to include nonlinear stress-strain behaviors, and material failure. Validation of these crash simulations is difficult due to a lack of sufficient information to adequately determine the uncertainty in the experimental data and the appropriateness of modeling assumptions. This paper evaluates probabilistic approaches to quantify the effects of finite element modeling assumptions on the predicted responses. The vertical drop test of a Fokker F28 fuselage section will be the focus of this paper. The results of a probabilistic analysis using finite element simulations will be compared with experimental data

    Creativity in Citizen Cyberscience

    Get PDF
    An interview study was conducted to explore volunteers’ experiences of creativity in citizen cyberscience. Participants were recruited from 4 projects: GeoTag-X, Virtual Atom Smasher, Synthetic Biology, and Extreme Citizen Science. Ninety-six interviews were conducted in total: 86 with volunteers (citizen scientists) and 10 with professional scientists. The resulting thematic analysis revealed that volunteers are involved in a range of creative activities, such as discussing ideas, suggesting improvements, gamification, artwork, creative writing, and outreach activities. We conclude that the majority of creative products are community-related. Creativity in citizen cyberscience is a collective process: volunteers create within a project and a community, both for themselves and for others

    Estimating the public health impact of disbanding a government alcohol monopoly: Application of new methods to the case of Sweden

    Get PDF
    Background: Government alcohol monopolies were created in North America and Scandinavia to limit health and social problems. The Swedish monopoly, Systembolaget, reports to a health ministry and controls the sale of all alcoholic beverages with > 3.5% alcohol/volume for off-premise consumption, within a public health mandate. Elsewhere, alcohol monopolies are being dismantled with evidence of increased consumption and harms. We describe innovative modelling techniques to estimate health outcomes in scenarios involving Systembolaget being replaced by 1) privately owned liquor stores, or 2) alcohol sales in grocery stores. The methods employed can be applied in other jurisdictions and for other policy changes. Methods: Impacts of the privatisation scenarios on pricing, outlet density, trading hours, advertising and marketing were estimated based on Swedish expert opinion and published evidence. Systematic reviews were conducted to estimate impacts on alcohol consumption in each scenario. Two methods were applied to estimate harm impacts: (i) alcohol attributable morbidity and mortality were estimated utilising the International Model of Alcohol Harms and Policies (InterMAHP); (ii) ARIMA methods to estimate the relationship between per capita alcohol consumption and specific types of alcohol-related mortality and crime. Results: Replacing government stores with private liquor stores (Scenario 1) led to a 20.0% (95% CI, 15.3-24.7) increase in per capita consumption. Replacement with grocery stores (Scenario 2) led to a 31.2% (25.1-37.3%) increase. With InterMAHP there were 763 or + 47% (35-59%) and 1234 or + 76% (60-92%) more deaths per year, for Scenarios 1 and 2 respectively. With ARIMA, there were 850 (334-1444) more deaths per year in Scenario 1 and 1418 more in Scenario 2 (543-2505). InterMAHP also estimated 10,859 or + 29% (22-34%) and 16,118 or + 42% (35-49%) additional hospital stays per year respectively. Conclusions: There would be substantial adverse consequences for public health and safety were Systembolaget to be privatised. We demonstrate a new combined approach for estimating the impact of alcohol policies on consumption and, using two alternative methods, alcohol-attributable harm. This approach could be readily adapted to other policies and settings. We note the limitation that some significant sources of uncertainty in the estimates of harm impacts were not modelled

    Dynamic Impact Tolerance of Shuttle RCC Leading Edge Panels using LS-DYNA

    Get PDF
    This paper describes a research program conducted to enable accurate prediction of the impact tolerance of the shuttle Orbiter leading-edge wing panels using 'physics-based- codes such as LS-DYNA, a nonlinear, explicit transient dynamic finite element code. The shuttle leading-edge panels are constructed of Reinforced-Carbon-Carbon (RCC) composite material, which issued because of its thermal properties to protect the shuttle during re-entry into the Earth's atmosphere. Accurate predictions of impact damage from insulating foam and other debris strikes that occur during launch required materials characterization of expected debris, including strain-rate effects. First, analytical models of individual foam and RCC materials were validated. Next, analytical models of individual foam cylinders impacting 6-in. x 6-in. RCC flat plates were developed and validated. LS-DYNA pre-test models of the RCC flat plate specimens established the impact velocity of the test for three damage levels: no-detectable damage, non-destructive evaluation (NDE) detectable damage, or visible damage such as a through crack or hole. Finally, the threshold of impact damage for RCC on representative Orbiter wing panels was predicted for both a small through crack and for NDE-detectable damage

    Dynamics Impact Tolerance of Shuttle RCC Leading Edge Panels Using LS-DYNA

    Get PDF
    This paper describes a research program conducted to enable accurate prediction of the impact tolerance of the shuttle Orbiter leading-edge wing panels using physics-based codes such as LS-DYNA, a nonlinear, explicit transient dynamic finite element code. The shuttle leading-edge panels are constructed of Reinforced-Carbon-Carbon (RCC) composite material, which is used because of its thermal properties to protect the shuttle during reentry into the Earth's atmosphere. Accurate predictions of impact damage from insulating foam and other debris strikes that occur during launch required materials characterization of expected debris, including strain-rate effects. First, analytical models of individual foam and RCC materials were validated. Next, analytical models of foam cylinders impacting 6- in. x 6-in. RCC flat plates were developed and validated. LS-DYNA pre-test models of the RCC flat plate specimens established the impact velocity of the test for three damage levels: no-detectable damage, non-destructive evaluation (NDE) detectable damage, or visible damage such as a through crack or hole. Finally, the threshold of impact damage for RCC on representative Orbiter wing panels was predicted for both a small through crack and for NDE-detectable damage

    Rapid literature review on the impact of health messaging and product information on alcohol labelling

    Get PDF
    Background and aim Alcohol labelling enables people to make informed decisions about the products they purchase and consume. This rapid review explores the impact of health messaging and product information on consumer attention, comprehension, recall, judgment and behavioural compliance in relation to alcohol use. Methods The rapid review adopted a multi-faceted search strategy to identify primary studies on health messaging and/or product information on alcohol packaging, and the impact of these on consumer-related outcomes. Results The review provides support for large, colourful labels on the front of alcohol products and the use of plain packaging to increase the visibility of health messaging. It also supports the use of explicit, negatively-framed statements that link alcohol to specific diseases. Colour-coded schemes and pictorial warnings may further optimize the effectiveness of alcohol labels. We did not find sufficient evidence to support the effectiveness of product information alone in influencing consumerattention, comprehension, recall, judgment and behavioural compliance. Conclusion Well-designed alcohol labels can positively influence consumers’ attention, comprehension, recall, judgment and behavioural compliance. The findings have implications for alcohol labelling research and policy.Output Status: Forthcoming/Available Onlin

    Chemical characterization of fine particulate matter emitted by peat fires in Central Kalimantan, Indonesia, during the 2015 El Niño

    Get PDF
    Fine particulate matter (PM2:5) was collected in situ from peat smoke during the 2015 El Niño peat fire episode in Central Kalimantan, Indonesia. Twenty-one PM samples were collected from 18 peat fire plumes that were primarily smoldering with modified combustion efficiency (MCE) values of 0.725-0.833. PM emissions were determined and chemically characterized for elemental carbon (EC), organic carbon (OC), water-soluble OC, water-soluble ions, metals, and organic species. Fuel-based PM2:5 mass emission factors (EFs) ranged from 6.0 to 29.6 g kg1 with an average of 17:36:0 g kg1. EC was detected only in 15 plumes and comprised 1% of PM mass. Together, OC (72 %), EC (1 %), water-soluble ions (1 %), and metal oxides (0.1 %) comprised 7411% of gravimetrically measured PM mass. Assuming that the remaining mass is due to elements that form organic matter (OM; i.e., elements O, H, N) an OM-to-OC conversion factor of 1.26 was estimated by linear regression. Overall, chemical speciation revealed the following characteristics of peat-burning emissions: high OC mass fractions (72%), primarily water-insoluble OC (8411 %C), low EC mass fractions (1 %), vanillic to syringic acid ratios of 1.9, and relatively high n-alkane contributions to OC (6.2 %C) with a carbon preference index of 1.2-1.6. Comparison to laboratory studies of peat combustion revealed similarities in the relative composition of PM but greater differences in the absolute EF values. The EFs developed herein, combined with estimates of the mass of peat burned, are used to estimate that 3.2-11 Tg of PM2:5 was emitted to atmosphere during the 2015 El Niño peatland fire event in Indonesia. Combined with gas-phase measurements of CO2, CO, CH4, and volatile organic carbon from Stockwell et al. (2016), it is determined that OC and EC accounted for 2.1 and 0.04% of total carbon emissions, respectively. These in situ EFs can be used to improve the accuracy of the representation of Indonesian peat burning in emission inventories and receptor-based models

    Designs for Heritage Language Learning: A Photography project in the UK Supplementary Education

    Get PDF
    Supplementary Schools in the UK offer educational opportunities for children and young people outside mainstream school provision. The paper reports an enquiry undertaken by practitioners in Greek Supplementary Schools in the UK to explore how features of mobile technologies may be leveraged to foster heritage language learning. It draws on the view that mobile learning can be a way for learners to explore the language informally and direct their own development (Kukulska-Hulme, 2015) and may also shape the learners’ ‘habits of mind’ (Wong, 2012, p.22) in learning—and consequently their language competencies. The project #ItsAllGreekToUS set to investigate how to create learning designs to incorporate effective use of mobile technologies within language learning and teaching. It draws on action research orientation and uses the idea of ‘Bring Your Own Device’ (BYOD) (JISC, 2013) in educational settings. The study involved several sessions around the concept of ‘loanwords’ and representations of this vocabulary in artefacts created with the use of mobile phones and a popular photography application (e.g. Pinterest). The participants were fourteen students (12-13s) attending a pre-GCSE class in a Greek School in London and nine students (12-14s) attending a GCSE class in a Greek School in Leicester. Evidence from user-generated content, the pupils’ views around the project and the practitioners’ observations are considered. The paper will discuss how students’ practices associated with mobile technologies are integrated into teachers’ practice. Particular attention will be drawn to designing language learning by blending traditional language classroom practices along incorporating the practices of sharing and curating content, as well as allowing ‘visibility’ through artefacts created by the learners

    Field measurements of trace gases and aerosols emitted by peat fires in Central Kalimantan, Indonesia, during the 2015 El Niño

    Get PDF
    Peat fires in Southeast Asia have become a major annual source of trace gases and particles to the regional-global atmosphere. The assessment of their influence on atmospheric chemistry, climate, air quality, and health has been uncertain partly due to a lack of field measurements of the smoke characteristics. During the strong 2015 El Niño event we deployed a mobile smoke sampling team in the Indonesian province of Central Kalimantan on the island of Borneo and made the first, or rare, field measurements of trace gases, aerosol optical properties, and aerosol mass emissions for authentic peat fires burning at various depths in different peat types. This paper reports the trace gas and aerosol measurements obtained by Fourier transform infrared spectroscopy, whole air sampling, photoacoustic extinctiometers (405 and 870 nm), and a small subset of the data from analyses of particulate filters. The trace gas measurements provide emission factors (EFs; grams of a compound per kilogram biomass burned) for up to ∼ 90 gases, including CO2, CO, CH4, non-methane hydrocarbons up to C10, 15 oxygenated organic compounds, NH3, HCN, NOx, OCS, HCl, etc. The modified combustion efficiency (MCE) of the smoke sources ranged from 0.693 to 0.835 with an average of 0.772 ± 0.053 (n = 35), indicating essentially pure smoldering combustion, and the emissions were not initially strongly lofted. The major trace gas emissions by mass (EF as g kg-1) were carbon dioxide (1564 ± 77), carbon monoxide (291 ± 49), methane (9.51 ± 4.74), hydrogen cyanide (5.75 ± 1.60), acetic acid (3.89 ± 1.65), ammonia (2.86 ± 1.00), methanol (2.14 ± 1.22), ethane (1.52 ± 0.66), dihydrogen (1.22 ± 1.01), propylene (1.07 ± 0.53), propane (0.989 ± 0.644), ethylene (0.961 ± 0.528), benzene (0.954 ± 0.394), formaldehyde (0.867 ± 0.479), hydroxyacetone (0.860 ± 0.433), furan (0.772 ± 0.035), acetaldehyde (0.697 ± 0.460), and acetone (0.691 ± 0.356). These field data support significant revision of the EFs for CO2 (g-8 %), CH4 (g-55 %), NH3 (g-86 %), CO (+39 %), and other gases compared with widely used recommendations for tropical peat fires based on a lab study of a single sample published in 2003. BTEX compounds (benzene, toluene, ethylbenzene, xylenes) are important air toxics and aerosol precursors and were emitted in total at 1.5 ± 0.6 g kg-1. Formaldehyde is probably the air toxic gas most likely to cause local exposures that exceed recommended levels. The field results from Kalimantan were in reasonable agreement with recent lab measurements of smoldering Kalimantan peat for overlap species, lending importance to the lab finding that burning peat produces large emissions of acetamide, acrolein, methylglyoxal, etc., which were not measurable in the field with the deployed equipment and implying value in continued similar efforts. The aerosol optical data measured include EFs for the scattering and absorption coefficients (EF Bscat and EF Babs, m2 kg-1 fuel burned) and the single scattering albedo (SSA) at 870 and 405 nm, as well as the absorption Ångström exponents (AAE). By coupling the absorption and co-located trace gas and filter data we estimated black carbon (BC) EFs (g kg-1) and the mass absorption coefficient (MAC, m2 g-1) for the bulk organic carbon (OC) due to brown carbon (BrC). Consistent with the minimal flaming, the emissions of BC were negligible (0.0055 ± 0.0016 g kg-1). Aerosol absorption at 405 nm was ∼ 52 times larger than at 870 nm and BrC contributed ∼ 96 % of the absorption at 405 nm. Average AAE was 4.97 ± 0.65 (range, 4.29-6.23). The average SSA at 405 nm (0.974 ± 0.016) was marginally lower than the average SSA at 870 nm (0.998 ± 0.001). These data facilitate modeling climate-relevant aerosol optical properties across much of the UV/visible spectrum and the high AAE and lower SSA at 405 nm demonstrate the dominance of absorption by the organic aerosol. Comparing the Babs at 405 nm to the simultaneously measured OC mass on filters suggests a low MAC (∼ 0.1) for the bulk OC, as expected for the low BC/OC ratio in the aerosol. The importance of pyrolysis (at lower MCE), as opposed to glowing (at higher MCE), in producing BrC is seen in the increase of AAE with lower MCE (r2 = 0.65)
    corecore