72 research outputs found

    Sodium Chloride Inhibits the Growth and Infective Capacity of the Amphibian Chytrid Fungus and Increases Host Survival Rates

    Get PDF
    The amphibian chytrid fungus Batrachochytrium dendrobatidis is a recently emerged pathogen that causes the infectious disease chytridiomycosis and has been implicated as a contributing factor in the global amphibian decline. Since its discovery, research has been focused on developing various methods of mitigating the impact of chytridiomycosis on amphibian hosts but little attention has been given to the role of antifungal agents that could be added to the host's environment. Sodium chloride is a known antifungal agent used routinely in the aquaculture industry and this study investigates its potential for use as a disease management tool in amphibian conservation. The effect of 0–5 ppt NaCl on the growth, motility and survival of the chytrid fungus when grown in culture media and its effect on the growth, infection load and survivorship of infected Peron's tree frogs (Litoria peronii) in captivity, was investigated. The results reveal that these concentrations do not negatively affect the survival of the host or the pathogen. However, concentrations greater than 3 ppt significantly reduced the growth and motility of the chytrid fungus compared to 0 ppt. Concentrations of 1–4 ppt NaCl were also associated with significantly lower host infection loads while infected hosts exposed to 3 and 4 ppt NaCl were found to have significantly higher survival rates. These results support the potential for NaCl to be used as an environmentally distributed antifungal agent for the prevention of chytridiomycosis in susceptible amphibian hosts. However, further research is required to identify any negative effects of salt exposure on both target and non-target organisms prior to implementation

    From descriptive to predictive distribution models: a working example with Iberian amphibians and reptiles

    Get PDF
    BACKGROUND: Aim of the study was to identify the conditions under which spatial-environmental models can be used for the improved understanding of species distributions, under the explicit criterion of model predictive performance. I constructed distribution models for 17 amphibian and 21 reptile species in Portugal from atlas data and 13 selected ecological variables with stepwise logistic regression and a geographic information system. Models constructed for Portugal were extrapolated over Spain and tested against range maps and atlas data. RESULTS: Descriptive model precision ranged from 'fair' to 'very good' for 12 species showing a range border inside Portugal ('edge species', kappa (k) 0.35–0.89, average 0.57) and was at best 'moderate' for 26 species with a countrywide Portuguese distribution ('non-edge species', k = 0.03–0.54, average 0.29). The accuracy of the prediction for Spain was significantly related to the precision of the descriptive model for the group of edge species and not for the countrywide species. In the latter group data were consistently better captured with the single variable search-effort than by the panel of environmental data. CONCLUSION: Atlas data in presence-absence format are often inadequate to model the distribution of species if the considered area does not include part of the range border. Conversely, distribution models for edge-species, especially those displaying high precision, may help in the correct identification of parameters underlying the species range and assist with the informed choice of conservation measures

    A Tale of Four “Carp”: Invasion Potential and Ecological Niche Modeling

    Get PDF
    . We assessed the geographic potential of four Eurasian cyprinid fishes (common carp, tench, grass carp, black carp) as invaders in North America via ecological niche modeling (ENM). These “carp” represent four stages of invasion of the continent (a long-established invader with a wide distribution, a long-established invader with a limited distribution, a spreading invader whose distribution is expanding, and a newly introduced potential invader that is not yet established), and as such illustrate the progressive reduction of distributional disequilibrium over the history of species' invasions.We used ENM to estimate the potential distributional area for each species in North America using models based on native range distribution data. Environmental data layers for native and introduced ranges were imported from state, national, and international climate and environmental databases. Models were evaluated using independent validation data on native and invaded areas. We calculated omission error for the independent validation data for each species: all native range tests were highly successful (all omission values <7%); invaded-range predictions were predictive for common and grass carp (omission values 8.8 and 19.8%, respectively). Model omission was high for introduced tench populations (54.7%), but the model correctly identified some areas where the species has been successful; distributional predictions for black carp show that large portions of eastern North America are at risk.ENMs predicted potential ranges of carp species accurately even in regions where the species have not been present until recently. ENM can forecast species' potential geographic ranges with reasonable precision and within the short screening time required by proposed U.S. invasive species legislation

    Equilibrium of Global Amphibian Species Distributions with Climate

    Get PDF
    A common assumption in bioclimatic envelope modeling is that species distributions are in equilibrium with contemporary climate. A number of studies have measured departures from equilibrium in species distributions in particular regions, but such investigations were never carried out for a complete lineage across its entire distribution. We measure departures of equilibrium with contemporary climate for the distributions of the world amphibian species. Specifically, we fitted bioclimatic envelopes for 5544 species using three presence-only models. We then measured the proportion of the modeled envelope that is currently occupied by the species, as a metric of equilibrium of species distributions with climate. The assumption was that the greater the difference between modeled bioclimatic envelope and the occupied distribution, the greater the likelihood that species distribution would not be at equilibrium with contemporary climate. On average, amphibians occupied 30% to 57% of their potential distributions. Although patterns differed across regions, there were no significant differences among lineages. Species in the Neotropic, Afrotropics, Indo-Malay, and Palaearctic occupied a smaller proportion of their potential distributions than species in the Nearctic, Madagascar, and Australasia. We acknowledge that our models underestimate non equilibrium, and discuss potential reasons for the observed patterns. From a modeling perspective our results support the view that at global scale bioclimatic envelope models might perform similarly across lineages but differently across regions

    The activation of eco-driving mental models: can text messages prime drivers to use their existing knowledge and skills?

    Get PDF
    Eco-driving campaigns have traditionally assumed that drivers lack the necessary knowledge and skills and that this is something that needs rectifying. Therefore, many support systems have been designed to closely guide drivers and fine-tune their proficiency. However, research suggests that drivers already possess a substantial amount of the necessary knowledge and skills regarding eco-driving. In previous studies, participants used these effectively when they were explicitly asked to drive fuel-efficiently. In contrast, they used their safe driving skills when they were instructed to drive as they would normally. Hence, it is assumed that many drivers choose not to engage purposefully in eco-driving in their everyday lives. The aim of the current study was to investigate the effect of simple, periodic text messages (nine messages in 2 weeks) on drivers’ eco- and safe driving performance. It was hypothesised that provision of eco-driving primes and advice would encourage the activation of their eco-driving mental models and that comparable safety primes increase driving safety. For this purpose, a driving simulator experiment was conducted. All participants performed a pre-test drive and were then randomly divided into four groups, which received different interventions. For a period of 2 weeks, one group received text messages with eco-driving primes and another group received safety primes. A third group received advice messages on how to eco-drive. The fourth group were instructed by the experimenter to drive fuel-efficiently, immediately before driving, with no text message intervention. A post-test drive measured behavioural changes in scenarios deemed relevant to eco- and safe driving. The results suggest that the eco-driving prime and advice text messages did not have the desired effect. In comparison, asking drivers to drive fuel-efficiently led to eco-driving behaviours. These outcomes demonstrate the difficulty in changing ingrained habits. Future research is needed to strengthen such messages or activate existing knowledge and skills in other ways, so driver behaviour can be changed in cost-efficient ways

    Prevention of acute kidney injury and protection of renal function in the intensive care unit

    Get PDF
    Acute renal failure on the intensive care unit is associated with significant mortality and morbidity. To determine recommendations for the prevention of acute kidney injury (AKI), focusing on the role of potential preventative maneuvers including volume expansion, diuretics, use of inotropes, vasopressors/vasodilators, hormonal interventions, nutrition, and extracorporeal techniques. A systematic search of the literature was performed for studies using these potential protective agents in adult patients at risk for acute renal failure/kidney injury between 1966 and 2009. The following clinical conditions were considered: major surgery, critical illness, sepsis, shock, and use of potentially nephrotoxic drugs and radiocontrast media. Where possible the following endpoints were extracted: creatinine clearance, glomerular filtration rate, increase in serum creatinine, urine output, and markers of tubular injury. Clinical endpoints included the need for renal replacement therapy, length of stay, and mortality. Studies are graded according to the international Grades of Recommendation, Assessment, Development, and Evaluation (GRADE) group system Several measures are recommended, though none carries grade 1A. We recommend prompt resuscitation of the circulation with special attention to providing adequate hydration whilst avoiding high-molecular-weight hydroxy-ethyl starch (HES) preparations, maintaining adequate blood pressure using vasopressors in vasodilatory shock. We suggest using vasopressors in vasodilatory hypotension, specific vasodilators under strict hemodynamic control, sodium bicarbonate for emergency procedures administering contrast media, and periprocedural hemofiltration in severe chronic renal insufficiency undergoing coronary intervention
    corecore