2,503 research outputs found

    EQUATIONS OF STATE FOR FINITE NUCLEAR SYSTEMS

    Get PDF

    Nuclear Breathing Mode in the Relativistic Mean Field Theory

    Full text link
    The breathing-mode giant monopole resonance is studied within the framework of the relativistic mean-field (RMF) theory. Using a broad range of parameter sets, an analysis of constrained incompressibility and excitation energy of isoscalar monopole states in finite nuclei is performed. It is shown that the non-linear scalar self-interaction and the resulting surface properties influence the breathing-mode considerably. It is observed that dynamical surface properties respond differently in the RMF theory than in the Skyrme approach. A comparison is made with the incompressibility derived from the semi-infinite nuclear matter and with constrained nonrelativistic Skyrme Hartree-Fock calculaions.Comment: Latex (12 pages) and 3 figures (available upon request) J. Phys. G (in press

    Supporting cross-domain system-level environmental and earth science

    Get PDF
    Answering the key challenges for society due to environmental issues like climate change, pollution and loss of biodiversity, and making the right decisions to tackle these in a cost-efficient and sustainable way requires scientific understanding of the Earth System. This scientific knowledge can then be used to inform the general public and policymakers. Scientific understanding starts with having available the right data, often in the form of observations. Research Infrastructures (RIs) exist to perform these observations in the required quality and to make the data available to first of all the researchers. In the current Big Data era, the increasing challenge is to provide the data in an interoperable and machine-readable and understandable form. The European RIs on environment formed a project cluster called ENVRI that tackles these issues. In this chapter, we introduce the societal relevance of the environmental data produced by the RIs and discuss the issues at hand in providing the relevant data according to the so-called FAIR principles

    Reaction dynamics in Pb+Pb at the CERN/SPS: from partonic degrees of freedom to freeze-out

    Get PDF
    We analyze the reaction dynamics of central Pb+Pb collisions at 160 GeV/nucleon. First we estimate the energy density pile-up at mid-rapidity and calculate its excitation function: The energy density is decomposed into hadronic and partonic contributions. A detailed analysis of the collision dynamics in the framework of a microscopic transport model shows the importance of partonic degrees of freedom and rescattering of leading (di)quarks in the early phase of the reaction for E > 30 GeV/nucleon. The energy density reaches up to 4 GeV/fm^3, 95% of which are contained in partonic degrees of freedom. It is shown that cells of hadronic matter, after the early reaction phase, can be viewed as nearly chemically equilibrated. This matter never exceeds energy densities of 0.4 GeV/fm^3, i.e. a density above which the notion of separated hadrons loses its meaning. The final reaction stage is analyzed in terms of hadron ratios, freeze-out distributions and a source analysis for final state pions.Comment: 10 pages, 7 figures, Proceedings of the Erice School on Nuclear Physics in Erice, Sicily, Italy, September 17 -25 1998; to be published in Progress in Particle and Nuclear Physics Vol. 4

    Molecular basis of altered excitability in Shaker mutants of Drosophila melanogaster.

    Get PDF
    Mutations in the Shaker (Sh) locus of Drosophila melanogaster have differing effects on action potential duration and repolarization in neurons as well as on A-type K+ channels (I(A)) in muscle. The molecular basis of three exemplary Sh alleles (Sh(KS133), Sh(E62) and Sh5) has been identified. They are point mutation in the Sh transcription unit expressing aberrant voltage-gated A-type K+ channels. Replicas of each mutation have been introduced by in vitro mutagenesis into Sh cDNA. The expression of in vitro transcribed mutant Sh cRNA in Xenopus laevis oocytes reproduced the specific phenotypic traits of each Sh allele. The lack of I(A) in Sh(KS133) is due to a missense mutation within a sequence motif occurring in all hitherto characterized voltage-gated K+ channel forming proteins. The reduction of I(A) in Sh(E62) is due to a mutation in an AG acceptor site. The intervening sequence between exon 19 and 20 is not spliced in Sh(E62) RNA. As a consequence Sh(E62) flies do not contain the full complement of Sh K+ forming proteins. Finally, the Sh5 mutation leads to an altered voltage dependence of K+ channel activation and inactivation as well as to an accelerated rate of recovery from inactivation. This is due to a missense mutation altering the amino acid sequence of the proposed transmembrane segment S5 of the Sh K+ channels. Segment S5 is located adjacently to the presumed voltage sensor of voltage-gated ion channels. The results explain the altered properties of excitable cells in Sh mutants and provide a general model for the possible role of A-type K+ channels in modulation action potential profiles

    Generic Finite Size Enhancement of Pairing in Mesoscopic Fermi Systems

    Get PDF
    The finite size dependent enhancement of pairing in mesoscopic Fermi systems is studied under the assumption that the BCS approach is valid and that the two body force is size independent. Different systems are investigated such as superconducting metallic grains and films as well atomic nuclei. It is shown that the finite size enhancement of pairing in these systems is in part due to the presence of a surface which accounts quite well for the data of nuclei and explains a good fraction of the enhancement in Al grains.Comment: Updated version 17/02/0

    Sensitivity of the Southern Ocean to enhanced regional Antarctic ice sheet meltwater input

    Get PDF
    Despite advances in our understanding of the processes driving contemporary sea level rise, the stability of the Antarctic ice sheets and their contribution to sea level under projected future warming remains uncertain due to the influence of strong ice-climate feedbacks. Disentangling these feedbacks is key to reducing uncertainty. Here we present a series of climate system model simulations that explore the potential effects of increased West Antarctic Ice Sheet (WAIS) meltwater flux on Southern Ocean dynamics. We project future changes driven by sectors of the WAIS, delivering spatially and temporally variable meltwater flux into the Amundsen, Ross and Weddell embayments over future centuries. Focusing on the Amundsen Sea sector of the WAIS over the next 200 years, we demonstrate that the enhanced meltwater flux rapidly stratifies surface waters, resulting in a significant decrease in the rate of Antarctic Bottom Water (AABW) formation. This triggers rapid pervasive ocean warming (>1°C) at depth due to advection from the original site(s) of meltwater input. The greatest warming predicted along sectors of the ice sheet that are highly sensitized to ocean forcing, creating a feedback loop that could enhance basal ice shelf melting and grounding line retreat. Given that we do not include the effects of rising CO2 - predicted to further reduce AABW formation - our experiments highlight the urgent need to develop a new generation of fully-coupled ice sheet climate models, that include feedback mechanisms such as this, to reduce uncertainty in climate and sea level projections

    Reliability of team-based self-monitoring in critical events: A pilot study

    No full text
    Background: Teamwork is a critical component during critical events. Assessment is mandatory for remediation and to target training programmes for observed performance gaps. Methods: The primary purpose was to test the feasibility of team-based self-monitoring of crisis resource management with a validated teamwork assessment tool. A secondary purpose was to assess item-specific reliability and content validity in order to develop a modified context-optimised assessment tool.We conducted a prospective, single-centre study to assess team-based self-monitoring of teamwork after in-situ inter-professional simulated critical events by comparison with an assessment by observers. The Mayo High Performance Teamwork Scale (MHPTS) was used as the assessment tool with evaluation of internal consistency, item-specific consensus estimates for agreement between participating teams and observers, and content validity. Results: 105 participants and 58 observers completed the MHPTS after a total of 16 simulated critical events over 8 months. Summative internal consistency of the MHPTS calculated as Cronbachs alpha was acceptable with 0.712 for observers and 0.710 for participants. Overall consensus estimates for dichotomous data (agreement/non-agreement) was 0.62 (Cohens kappa; IQ-range 0.31-0.87). 6/16 items had excellent (kappa > 0.8) and 3/16 good reliability (kappa > 0.6). Short questions concerning easy to observe behaviours were more likely to be reliable. The MHPTS was modified using a threshold for good reliability of kappa > 0.6. The result is a 9 item self-assessment tool (TeamMonitor) with a calculated median kappa of 0.86 (IQ-range: 0.67-1.0) and good content validity.Conclusions: Team-based self-monitoring with the MHPTS to assess team performance during simulated critical events is feasible. A context-based modification of the tool is achievable with good internal consistency and content validity. Further studies are needed to investigate if team-based self-monitoring may be used as part of a programme of assessment to target training programmes for observed performance gaps. © 2013 Stocker et al.; licensee BioMed Central Ltd

    Destabilization of the thermohaline circulation by transient perturbations to the hydrological cycle

    Full text link
    We reconsider the problem of the stability of the thermohaline circulation as described by a two-dimensional Boussinesq model with mixed boundary conditions. We determine how the stability properties of the system depend on the intensity of the hydrological cycle. We define a two-dimensional parameters' space descriptive of the hydrology of the system and determine, by considering suitable quasi-static perturbations, a bounded region where multiple equilibria of the system are realized. We then focus on how the response of the system to finite-amplitude surface freshwater forcings depends on their rate of increase. We show that it is possible to define a robust separation between slow and fast regimes of forcing. Such separation is obtained by singling out an estimate of the critical growth rate for the anomalous forcing, which can be related to the characteristic advective time scale of the system.Comment: 37 pages, 8 figures, submitted to Clim. Dy
    corecore