3,005 research outputs found

    The non-Abelian feature of parton energy loss in energy dependence of jet quenching in high-energy heavy-ion collisions

    Full text link
    One of the non-Abelian features of parton energy loss is the ratio ΔEg/ΔEq=9/4\Delta E_g/\Delta E_q=9/4 between gluon and quark jets. Since jet production rate is dominated by quark jets at high xT=2pT/sx_T=2p_T/\sqrt{s} and by gluon jets at low xTx_T, high pTp_T hadron suppression in high-energy heavy-ion collisions should reflect such a non-Abelian feature. Within a leading order perturbative QCD parton model that incorporates transverse expansion and Woods-Saxon nuclear distribution, the energy dependence of large pT520p_T\sim 5-20 GeV/cc hadron suppression is found to be sensitive to the non-Abelian feasture of parton energy loss and could be tested by data from low energy runs at RHIC or data from LHC.Comment: RevTex 4, 7 pages, 3 figure

    Some rare cases of chimerism in twin cattle and their proposed use in determining germinal cell migration

    Get PDF
    Three dizygotic, heterosexual twins with chimerisms carrying marker chromosomes are described. Phenotypic and cytogenetic methods were used to identify these animals. The occurrence of germinal cell migration causing gonad chimerism can be detected by the marker chromosome event under conditions described in this repor

    Global warming will affect the maximum potential abundance of boreal plant species

    Get PDF
    Forecasting the impact of future global warming on biodiversity requires understanding how temperature limits the distribution of species. Here we rely on Liebig's Law of Minimum to estimate the effect of temperature on the maximum potential abundance that a species can attain at a certain location. We develop 95%‐quantile regressions to model the influence of effective temperature sum on the maximum potential abundance of 25 common understory plant species of Finland, along 868 nationwide plots sampled in 1985. Fifteen of these species showed a significant response to temperature sum that was consistent in temperature‐only models and in all‐predictors models, which also included cumulative precipitation, soil texture, soil fertility, tree species and stand maturity as predictors. For species with significant and consistent responses to temperature, we forecasted potential shifts in abundance for the period 2041–2070 under the IPCC A1B emission scenario using temperature‐only models. We predict major potential changes in abundance and average northward distribution shifts of 6–8 km yr−1. Our results emphasize inter‐specific differences in the impact of global warming on the understory layer of boreal forests. Species in all functional groups from dwarf shrubs, herbs and grasses to bryophytes and lichens showed significant responses to temperature, while temperature did not limit the abundance of 10 species. We discuss the interest of modelling the ‘maximum potential abundance’ to deal with the uncertainty in the predictions of realized abundances associated to the effect of environmental factors not accounted for and to dispersal limitations of species, among others. We believe this concept has a promising and unexplored potential to forecast the impact of specific drivers of global change under future scenarios.202

    A coral-on-a-chip microfluidic platform enabling live-imaging microscopy of reef-building corals

    Get PDF
    Coral reefs, and the unique ecosystems they support, are facing severe threats by human activities and climate change. Our understanding of these threats is hampered by the lack of robust approaches for studying the micro-scale interactions between corals and their environment. Here we present an experimental platform, coral-on-a-chip, combining micropropagation and microfluidics to allow direct microscopic study of live coral polyps. The small and transparent coral micropropagates are ideally suited for live-imaging microscopy, while the microfluidic platform facilitates long-term visualization under controlled environmental conditions. We demonstrate the usefulness of this approach by imaging coral micropropagates at previously unattainable spatio-temporal resolutions, providing new insights into several micro-scale processes including coral calcification, coral-pathogen interaction and the loss of algal symbionts (coral bleaching). Coral-on-a-chip thus provides a powerful method for studying coral physiology in vivo at the micro-scale, opening new vistas in coral biology

    An examination of the precipitation delivery mechanisms for Dolleman Island, eastern Antarctic Peninsula

    Get PDF
    Copyright @ 2004 Wiley-BlackwellThe variability of size and source of significant precipitation events were studied at an Antarctic ice core drilling site: Dolleman Island (DI), located on the eastern coast of the Antarctic Peninsula. Significant precipitation events that occur at DI were temporally located in the European Centre for Medium-Range Weather Forecasting (ECMWF) reanalysis data set, ERA-40. The annual and summer precipitation totals from ERA-40 at DI both show significant increases over the reanalysis period. Three-dimensional backwards air parcel trajectories were then run for 5 d using the ECMWF ERA-15 wind fields. Cluster analyses were performed on two sets of these backwards trajectories: all days in the range 1979–1992 (the climatological time-scale) and a subset of days when a significant precipitation event occurred. The principal air mass sources and delivery mechanisms were found to be the Weddell Sea via lee cyclogenesis, the South Atlantic when there was a weak circumpolar trough (CPT) and the South Pacific when the CPT was deep. The occurrence of precipitation bearing air masses arriving via a strong CPT was found to have a significant correlation with the southern annular mode (SAM); however, the arrival of air masses from the same region over the climatological time-scale showed no such correlation. Despite the dominance in both groups of back trajectories of the westerly circulation around Antarctica, some other key patterns were identified. Most notably there was a higher frequency of lee cyclogenesis events in the significant precipitation trajectories compared to the climatological time-scale. There was also a tendency for precipitation trajectories to come from more northerly latitudes, mostly from 50–70°S. The El Niño Southern Oscillation (ENSO) was found to have a strong influence on the mechanism by which the precipitation was delivered; the frequency of occurrence of precipitation from the east (west) of DI increased during El Niño (La Niña) events

    A Computational Investigation of Sooting Limits of Spherical Diffusion Flames

    Get PDF
    Limiting conditions for soot particle inception in spherical diffusion flames were investigated numerically. The flames were modeled using a one-dimensional, time accurate diffusion flame code with detailed chemistry and transport and an optically thick radiation model. Seventeen normal and inverse flames were considered, covering a wide range of stoichiometric mixture fraction, adiabatic flame temperature, and residence time. These flames were previously observed to reach their sooting limits after 2 s of microgravity. Sooting-limit diffusion flames with residence times longer than 200 ms were found to have temperatures near 1190 K where C/O = 0.6, whereas flames with shorter residence times required increased temperatures. Acetylene was found to be a reasonable surrogate for soot precursor species in these flames, having peak mole fractions of about 0.01

    Climate change amplifies plant invasion hotspots in Nepal

    Get PDF
    Aim Climate change has increased the risk of biological invasions, particularly by increasing the climatically suitable regions for invasive alien species. The distribution of many native and invasive species has been predicted to change under future climate. We performed species distribution modelling of invasive alien plants (IAPs) to identify hotspots under current and future climate scenarios in Nepal, a country ranked among the most vulnerable countries to biological invasions and climate change in the world. Location Nepal. Methods We predicted climatically suitable niches of 24 out of the total 26 reported IAPs in Nepal under current and future climate (2050 for RCP 6.0) using an ensemble of species distribution models. We also conducted hotspot analysis to highlight the geographic hotspots for IAPs in different climatic zones, land cover, ecoregions, physiography and federal states. Results Under future climate, climatically suitable regions for 75% of IAPs will expand in contrast to a contraction of the climatically suitable regions for the remaining 25% of the IAPs. A high proportion of the modelled suitable niches of IAPs occurred on agricultural lands followed by forests. In aggregation, both extent and intensity (invasion hotspots) of the climatically suitable regions for IAPs will increase in Nepal under future climate scenarios. The invasion hotspots will expand towards the high‐elevation mountainous regions. In these regions, land use is rapidly transforming due to the development of infrastructure and expansion of tourism and trade. Main conclusions Negative impacts on livelihood, biodiversity and ecosystem services, as well as economic loss caused by IAPs in the future, may be amplified if preventive and control measures are not immediately initiated. Therefore, the management of IAPs in Nepal should account for the vulnerability of climate change‐induced biological invasions into new areas, primarily in the mountains

    Penetration of cefuroxime into the cerebrospinal fluid of patients with traumatic brain injury

    Get PDF
    Cefuroxime levels were measured in cerebrospinal fluid (CSF) and serum of four patients with traumatic brain injury following the implantation of intraventricular catheters. The levels ranged from 0.15 to 2.03 μg/mL in CSF and from 1.8 to 66.9 μg/mL in serum. No ventriculostomy related infections were detecte

    Electrical properties of a-antimony selenide

    Full text link
    This paper reports conduction mechanism in a-\sbse over a wide range of temperature (238K to 338K) and frequency (5Hz to 100kHz). The d.c. conductivity measured as a function of temperature shows semiconducting behaviour with activation energy Δ\DeltaE= 0.42 eV. Thermally induced changes in the electrical and dielectric properties of a-\sbse have been examined. The a.c. conductivity in the material has been explained using modified CBH model. The band conduction and single polaron hopping is dominant above room temperature. However, in the lower temperature range the bipolaron hopping dominates.Comment: 9 pages (RevTeX, LaTeX2e), 9 psfigures, also at http://pu.chd.nic.in/ftp/pub/san16 e-mail: gautam%[email protected]
    corecore