139 research outputs found

    Quantifying effects of cold acclimation and delayed springtime photosynthesis resumption in northern ecosystems.

    Get PDF
    Land carbon dynamics in temperate and boreal ecosystems are sensitive to environmental change. Accurately simulating gross primary productivity (GPP) and its seasonality is key for reliable carbon cycle projections. However, significant biases have been found in early spring GPP simulations of northern forests, where observations often suggest a later resumption of photosynthetic activity than predicted by models. Here, we used eddy covariance-based GPP estimates from 39 forest sites that differ by their climate and dominant plant functional types. We used a mechanistic and an empirical light use efficiency (LUE) model to investigate the magnitude and environmental controls of delayed springtime photosynthesis resumption (DSPR) across sites. We found DSPR reduced ecosystem LUE by 30-70% at many, but not all site-years during spring. A significant depression of LUE was found not only in coniferous but also at deciduous forests and was related to combined high radiation and low minimum temperatures. By embedding cold-acclimation effects on LUE that considers the delayed effects of minimum temperatures, initial model bias in simulated springtime GPP was effectively resolved. This provides an approach to improve GPP estimates by considering physiological acclimation and enables more reliable simulations of photosynthesis in northern forests and projections in a warming climate

    Diagnosing evapotranspiration responses to water deficit across biomes using deep learning.

    Get PDF
    Accounting for water limitation is key to determining vegetation sensitivity to drought. Quantifying water limitation effects on evapotranspiration (ET) is challenged by the heterogeneity of vegetation types, climate zones and vertically along the rooting zone. Here, we train deep neural networks using flux measurements to study ET responses to progressing drought conditions. We determine a water stress factor (fET) that isolates ET reductions from effects of atmospheric aridity and other covarying drivers. We regress fET against the cumulative water deficit, which reveals the control of whole-column moisture availability. We find a variety of ET responses to water stress. Responses range from rapid declines of fET to 10% of its water-unlimited rate at several savannah and grassland sites, to mild fET reductions in most forests, despite substantial water deficits. Most sensitive responses are found at the most arid and warm sites. A combination of regulation of stomatal and hydraulic conductance and access to belowground water reservoirs, whether in groundwater or deep soil moisture, could explain the different behaviors observed across sites. This variety of responses is not captured by a standard land surface model, likely reflecting simplifications in its representation of belowground water storage

    Tree water uptake patterns across the globe.

    Get PDF
    Plant water uptake from the soil is a crucial element of the global hydrological cycle and essential for vegetation drought resilience. Yet, knowledge of how the distribution of water uptake depth (WUD) varies across species, climates, and seasons is scarce relative to our knowledge of aboveground plant functions. With a global literature review, we found that average WUD varied more among biomes than plant functional types (i.e. deciduous/evergreen broadleaves and conifers), illustrating the importance of the hydroclimate, especially precipitation seasonality, on WUD. By combining records of rooting depth with WUD, we observed a consistently deeper maximum rooting depth than WUD with the largest differences in arid regions - indicating that deep taproots act as lifelines while not contributing to the majority of water uptake. The most ubiquitous observation across the literature was that woody plants switch water sources to soil layers with the highest water availability within short timescales. Hence, seasonal shifts to deep soil layers occur across the globe when shallow soils are drying out, allowing continued transpiration and hydraulic safety. While there are still significant gaps in our understanding of WUD, the consistency across global ecosystems allows integration of existing knowledge into the next generation of vegetation process models

    Photosynthetic acclimation and sensitivity to short- and long-term environmental changes in a drought-prone forest

    Get PDF
    Future climate will be characterized by an increase in frequency and duration of drought and warming that exacerbates atmospheric evaporative demand. How trees acclimate to long-term soil moisture changes and whether these long-term changes alter trees' sensitivity to short-term (day to months) variations of vapor pressure deficit (VPD) and soil moisture is largely unknown. Leaf gas exchange measurements were performed within a long-term (17 years) irrigation experiment in a drought-prone Scots pine-dominated forest in one of Switzerland's driest areas on trees in naturally dry (control), irrigated, and 'irrigation-stop' (after 11 years of irrigation) conditions. Seventeen years of irrigation increased photosynthesis (A) and stomatal conductance (g(s)) and reduced g(s) sensitivity to increasing VPD and soil drying. Following irrigation-stop, gas exchange decreased only after 3 years. After 5 years, maximum carboxylation (V-cmax) and electron transport (J(max)) rates in irrigation-stop recovered to similar levels as to before the irrigation-stop. These results suggest that long-term release from soil drought reduces the sensitivity to VPD and that atmospheric constraints may play an increasingly important role in combination with soil drought. Moreover, our study indicates that structural adjustments lead to an attenuation of initially strong leaf-level acclimation to strong multiple-year drought. Acclimation to irrigation increased gas exchange in Pinus sylvestris, but reduced the sensitivity to short-term changes. In addition, structural adjustments led to an attenuation of initially strong leaf-level acclimation.Peer reviewe

    Simple Process-Led Algorithms for Simulating Habitats (SPLASH v.1.0): Robust Indices of Radiation, Evapotranspiration and Plant-Available Moisture

    Get PDF
    Bioclimatic indices for use in studies of ecosystem function, species distribution, and vegetation dynamics under changing climate scenarios depend on estimates of surface fluxes and other quantities, such as radiation, evapotranspi- ration and soil moisture, for which direct observations are sparse. These quantities can be derived indirectly from me- teorological variables, such as near-surface air temperature, precipitation and cloudiness. Here we present a consolidated set of simple process-led algorithms for simulating habitats (SPLASH) allowing robust approximations of key quantities at ecologically relevant timescales. We specify equations, derivations, simplifications, and assumptions for the estima- tion of daily and monthly quantities of top-of-the-atmosphere solar radiation, net surface radiation, photosynthetic photon flux density, evapotranspiration (potential, equilibrium, and actual), condensation, soil moisture, and runoff, based on analysis of their relationship to fundamental climatic drivers. The climatic drivers include a minimum of three meteoro- logical inputs: precipitation, air temperature, and fraction of bright sunshine hours. Indices, such as the moisture index, the climatic water deficit, and the Priestley–Taylor coeffi- cient, are also defined. The SPLASH code is transcribed in C++, FORTRAN, Python, and R. A total of 1 year of results are presented at the local and global scales to exemplify the spatiotemporal patterns of daily and monthly model outputs along with comparisons to other model results

    Glacier contributions to river discharge during the current Chilean megadrought

    Get PDF
    The current Chilean megadrought has led to acute water shortages in central Chile since 2010. Glaciers have provided vital fresh water to the region’s rivers, but the quantity, timing and sustainability of that provision remain unclear. Here we combine in-situ, remote sensing and climate reanalysis data to show that from 2010 to 2018 during the megadrought, unsustainable imbalance ablation of glaciers (ablation not balanced by new snowfall) strongly buffered the late-summer discharge of the Maipo River, a primary source of water to Santiago. If there had been no glaciers, water availability would have been reduced from December through May, with a 31 ± 19% decrease during March. Our results indicate that while the annual contributions of imbalance ablation to river discharge during the megadrought have been small compared to those from precipitation and sustainable balance ablation, they have nevertheless been a substantial input to a hydrological system that was already experiencing high water stress. The water-equivalent volume of imbalance ablation generated in the Maipo Basin between 2010 and 2018 was 740 × 106 m3 (19 ± 12 mm yr-1), approximately 3.4 times the capacity of the basin’s El Yeso Reservoir. This is equivalent to 14% of Santiago’s potable water use in that time, while total glacier ablation was equivalent to 59%. We show that glacier retreat will exacerbate river discharge deficits and further jeopardise water availability in central Chile if precipitation deficits endure, and conjecture that these effects will be amplified by climatic warming

    Disentangling the role of photosynthesis and stomatal conductance on rising forest water-use efficiency

    Get PDF
    Multiple lines of evidence suggest that plant water-use efficiency (WUE) -the ratio of carbon assimilation to water loss- has increased in recent decades. Although rising atmospheric CO2 has been proposed as the principal cause, the underlying physiological mechanisms are still being debated, and implications for the global water cycle remain uncertain. Here, we addressed this gap using 30-y tree ring records of carbon and oxygen isotope measurements and basal area increment from 12 species in 8 North American mature temperate forests. Our goal was to separate the contributions of enhanced photosynthesis and reduced stomatal conductance to WUE trends and to assess consistency between multiple commonly used methods for estimating WUE. Our results show that tree ring-derived estimates of increases in WUE are consistent with estimates from atmospheric measurements and predictions based on an optimal balancing of carbon gains and water costs, but are lower than those based on ecosystemscale flux observations. Although both physiological mechanisms contributed to rising WUE, enhanced photosynthesis was widespread, while reductions in stomatal conductance were modest and restricted to species that experienced moisture limitations. This finding challenges the hypothesis that rising WUE in forests is primarily the result of widespread, CO2-induced reductions in stomatal conductance

    Past and future carbon fluxes from land use change, shifting cultivation and wood harvest

    Get PDF
    Carbon emissions from anthropogenic land use (LU) and land use change (LUC) are quantified with a Dynamic Global Vegetation Model for the past and the 21st century following Representative Concentration Pathways (RCPs). Wood harvesting and parallel abandonment and expansion of agricultural land in areas of shifting cultivation are explicitly simulated (gross LUC) based on the Land Use Harmonization (LUH) dataset and a proposed alternative method that relies on minimum input data and generically accounts for gross LUC. Cumulative global LUC emissions are 72 GtC by 1850 and 243 GtC by 2004 and 27–151 GtC for the next 95 yr following the different RCP scenarios. The alternative method reproduces results based on LUH data with full transition information within <0.1 GtC/yr over the last decades and bears potential for applications in combination with other LU scenarios. In the last decade, shifting cultivation and wood harvest within remaining forests including slash each contributed 19% to the mean annual emissions of 1.2 GtC/yr. These factors, in combination with amplification effects under elevated CO2, contribute substantially to future emissions from LUC in all RCPs

    The carbon cycle in Mexico: Past, present and future of C stocks and fluxes

    Get PDF
    We modeled the carbon (C) cycle in Mexico with a process-based approach. We used different available products (satellite data, field measurements, models and flux towers) to estimate C stocks and fluxes in the country at three different time frames: present (defined as the period 2000–2005), the past century (1901–2000) and the remainder of this century (2010–2100). Our estimate of the gross primary productivity (GPP) for the country was 2137±1023 TgC yr−1^{-1} and a total C stock of 34 506±7483 TgC, with 20 347±4622 TgC in vegetation and 14 159±3861 in the soil. Contrary to other current estimates for recent decades, our results showed that Mexico was a C sink over the period 1990–2009 (+31 TgC yr−1^{-1}) and that C accumulation over the last century amounted to 1210±1040 TgC.We attributed this sink to the CO2_{2} fertilization effect on GPP, which led to an increase of 3408±1060 TgC, while both climate and land use reduced the country C stocks by -458±1001 and -1740±878 TgC, respectively. Under different future scenarios, the C sink will likely continue over the 21st century, with decreasing C uptake as the climate forcing becomes more extreme. Our work provides valuable insights on relevant driving processes of the C cycle such as the role of drought in drylands (e.g., grasslands and shrublands) and the impact of climate change on the mean residence time of soil C in tropical ecosystems
    • …
    corecore