810 research outputs found

    Indicator systems - resource use in organic systems

    Get PDF
    A balanced use of resources within organic farming systems is required to maintain sustainable systems. Hence, it is essential to have tools that can assess the use of resources within the farming system and their impact on the environment. The range of tools that have been developed include those assessing local farm-scale issues together with those that assess impacts at the global scale. At the global scale assessments are usually made on the basis of a unit of product whereas at the local scale assessments can also be made on an area basis. In addition, the tools also assess a variety of issues, e.g. biodiversity, pollution potential, energy and water use. The level of detail required for the different assessment tools differs substantially; nevertheless it is essential that the indicator systems developed are based on sound knowledge, are acceptable to the farmers and can guide their future actions

    Improving supply and phosphorous use efficiency in organic farming systems

    Get PDF
    Phosphorus (P) is an essential plant nutrient that needs to be managed carefully in organic systems so that crop yield and quality remain sustainable without contributing to environmental damage, particularly that associated with eutrophication. Under organic regulations, minimally processed rock phosphate (PR) can be used to amend low P fertility soils, although the solubility is extremely low at optimum soil pH for most crop growth (pH 6.5). This paper describes a project (PLINK) which aims to develop methods of improving P efficiency on organic farms, although the same approaches may also be applicable on conventional and low-input farms. The methodologies that the project is developing include the fermentation and composting of crop waste material with PR in order to solubilise P and make it more available to the crop. Some initial results are described here. In addition, the project will investigate the alteration of the rotation to include crops or varieties with high P uptake efficiency, or roots that possess acidifying properties which improve P availability for following crops

    The effect of ocean acidification on organic and inorganic speciation of trace metals

    Get PDF
    Rising concentrations of atmospheric carbon dioxide are causing acidification of the oceans. 20 This results in changes to the concentrations of key chemical species such as hydroxide, 21 carbonate and bicarbonate ions. These changes will affect the distribution of different forms 22 of trace metals. Using IPCC data for pCO2 and pH under four future emissions scenarios (to 23 the year 2100) we use a chemical speciation model to predict changes in the distribution of 24 organic and inorganic forms of trace metals. Under a scenario where emissions peak after 25 the year 2100, predicted free ion Al, Fe, Cu and Pb concentrations increase by factors of up 26 to approximately 21, 2.4, 1.5 and 2.0 respectively. Concentrations of organically complexed 27 metal typically have a lower sensitivity to ocean acidification induced changes. 28 Concentrations of organically-complexed Mn, Cu, Zn and Cd fall by up to 10%, while those 29 of organically-complexed Fe, Co and Ni rise by up to 14%. Although modest, these changes 30 may have significance for the biological availability of metals given the close adaptation of 31 marine microorganisms to their environment

    23 GHz VLBI Observations of SN 2008ax

    Get PDF
    We report on phase-referenced 23 GHz Very-Long-Baseline-Interferometry (VLBI) observations of the type IIb supernova SN 2008ax, made with the Very Long Baseline Array (VLBA) on 2 April 2008 (33 days after explosion). These observations resulted in a marginal detection of the supernova. The total flux density recovered from our VLBI image is 0.8±\pm0.3 mJy (one standard deviation). As it appears, the structure may be interpreted as either a core-jet or a double source. However, the supernova structure could be somewhat confused with a possible close by noise peak. In such a case, the recovered flux density would decrease to 0.48±\pm0.12 mJy, compatible with the flux densities measured with the VLA at epochs close in time to our VLBI observations. The lowest average expansion velocities derived from our observations are (1.90±0.30)×105(1.90 \pm 0.30) \times 10^5 km s1^{-1} (case of a double source) and (5.2±1.3)×104(5.2 \pm 1.3) \times 10^4 km s1^{-1} (taking the weaker source component as a spurious, close by, noise peak, which is the more likely interpretation). These velocities are 7.3 and 2 times higher, respectively, than the maximum ejecta velocity inferred from optical-line observations.Comment: 4 pages, 3 figures. Accepted in A&A on 24/03/200

    Using WHAM-FTOX to understand proton and metal mixture toxicity in the laboratory and field

    Get PDF
    It is a well-attested fact that the uptake and toxicity of cationic metals to organisms are dependent on the chemistry of the exposure medium. Considerable research effort has been devoted to development of modelling tools to understand, explain and predict these medium effects. Predominant among the developed models is the Biotic Ligand Model (BLM), which considers exposure to be directly related to metal bound to specific uptake sites (biotic ligands) on the target organism, with chemical speciation in the medium and competition for binding to the biotic ligand(s) accounted for. Similarly to the BLM, WHAM-FTOX is based around the concept of computing amounts of metal bound to the organism. However, rather than computing amounts of metals bound to assumed specific biotic ligands, WHAM-FTOX assumes that exposure to metals is proportional to the amount of metal bound by all weak-acid coordination sites on or in the organism, in equilibrium with the surrounding medium. An overall toxic response for mixtures of cations (metals and protons) is quantified as a toxicity function FTOX, given by FTOX = ∑ αi ϴi where the exposure to each cation is given by ϴi (the fractional occupancy of binding sites) and αi is a toxicity coefficient specific to each cation. Amounts of bound cations are computed using the WHAM chemical speciation model, taking the amounts bound to humic acid (HA) as proxies for amounts bound to organisms. This approach has the advantage that constants for cation binding are already available, rather than needing to be derived as with the BLM, and that mixture effects are readily computed. Furthermore, the toxic effects of proton binding can be included in the mixture exposure modelling. Initial applications of WHAM-FTOX focused on describing field community effects in freshwaters impacted by acidification and metal contamination in a number of locations including the UK and North America. Subsequent work has focused on modelling accumulation and mixture effects in laboratory toxicity tests. Most recently, the model has been used in a meta-analysis of single metal–single species laboratory toxicity data with the aim of providing a unifying picture of toxic effects through time and across metals and organisms. Collectively, this body of work demonstrates the utility of WHAM-FTOX as a unifying tool for understanding and predicting the toxicity of cation mixtures from the laboratory to the field, from single species to whole communities. Prospects for the future include the use of the model to predict mixture field effects based on calibration to laboratory data

    A Study of Compact Radio Sources in Nearby Face-on Spiral Galaxies. I. Long Term Evolution of M83

    Full text link
    We present analyses of deep radio observations of M83 taken with the Very Large Array spanning fifteen years, including never before published observations from 1990 and 1998. We report on the evolution of 55 individual point sources, which include four of the six known historical supernovae in this galaxy. A total of 10 sources have X-ray counterparts from a {\em Chandra} survey. Each of these sources show non-thermal spectral indices, and most appear to be X-ray supernova remnants. Comparing the radio source list to surveys in optical and X-ray, we identify three optical/X-ray supernova remnants. Nearly half of the detected radio sources in these observations are coincident with known H II regions lying in the spiral arm structures of the galaxy. We also report on changes in emission from the complex nuclear region, which has shown variability at 20cm wavelengths. We confirm that the peak radio emission from the nucleus is not coincident with the known optical center. One lesser nuclear peak is consistent with the optical/IR nucleus. Previous dynamical studies of a ``dark'' nuclear mass indicate a possible match to other radio nuclear emission regions in M83.Comment: 32 Pages, 8 figures, to appear in AJ. Full resolution figures can be obtained at http://nhn.ou.edu/~maddo

    Multi-Wavelength Properties of the Type IIb SN 2008ax

    Get PDF
    We present the UV, optical, X-ray, and radio properties of the Type IIb SN 2008ax discovered in NGC 4490. The observations in the UV are one of the earliest of a Type IIb supernova (SN). On approximately day four after the explosion, a dramatic upturn in the u and uvw1 (lambda_c = 2600 Angstroms) light curves occurred after an initial rapid decline which is attributed to adiabatic cooling after the initial shock breakout. This rapid decline and upturn is reminiscent of the Type IIb SN 1993J on day six after the explosion. Optical/near-IR spectra taken around the peak reveal prominent H-alpha, HeI, and CaII absorption lines. A fading X-ray source is also located at the position of SN 2008ax, implying an interaction of the SN shock with the surrounding circumstellar material and a mass-loss rate of the progenitor of M_dot = (9+/-3)x10^-6 solar masses per year. The unusual time evolution (14 days) of the 6 cm peak radio luminosity provides further evidence that the mass-loss rate is low. Combining the UV, optical, X-ray, and radio data with models of helium exploding stars implies the progenitor of SN 2008ax was an unmixed star in an interacting-binary. Modeling of the SN light curve suggests a kinetic energy (E_k) of 0.5x10^51 ergs, an ejecta mass (M_ej) of 2.9 solar masses, and a nickel mass (M_Ni) of 0.06 solar masses.Comment: Accepted to ApJ Letters, 14 pages, 3 figures, 2 table

    A robust ex vivo method to evaluate the diffusion properties of agents in biological tissues

    Get PDF
    A robust method is presented for evaluating the diffusion properties of chemicals in ex vivo biological tissues. Using this method that relies only on thickness and collimated transmittance measurements, the diffusion properties of glycerol, fructose, polypropylene glycol and water in muscle tissues were evaluated. Amongst other results, the diffusion coefficient of glycerol in colorectal muscle was estimated with a value of 3.3 × 10−7 cm2/s. Due to the robustness and simplicity of the method, it can be used in other fields of biomedical engineering, namely in organ cryoprotection and food industry
    corecore