1,119 research outputs found

    In Vitro Complement-Binding on Cytoplasmic Structures in Normal Human Skin: I. Immunofluorescence Studies

    Get PDF
    Incubation of cryostat sections of normal human skin with normal human serum (NHS) at 37°C followed by fluorescein isothiocyanate labeled rabbit antihuman C3 (FITC-R/Hu-C3) yields cytoplasmic staining of various cell types including keratinocytes of the upper epidermal layers, melanocytes, fibroblasts, smooth muscle cells, and cells lining vascular structures.Deposition of C3 on the respective cytoplasmic structures is most likely due to activation of the classical complement (C) cascade on these structures since no fluorescent staining is observed when serum of patients with hereditary C4-deficiency is used instead of NHS or when incubation with NHS is performed in the presence of EDTA or EGTA in concentrations known to inhibit classical C pathway activation. Further evidence suggesting the involvement of the classical C pathway comes from the finding that incubation of cryostat skin sections with NHS followed by FITC labeled rabbit antihuman Clq (FITC-R/Hu-Clq) results in a fluorescent staining pattern remarkably similar to that seen after exposure of cryostat skin sections to NHS and FITC-R/ Hu-C3.Although formal proof is lacking, our investigations strongly indicate that binding to and activation of C components on cytoplasmic structures occur independently of the presence of circulating antibodies. This assumption is based on the finding that in 17 out of 20 NHS we were not able to detect any skin reactive antibodies by indirect immunofluorescence (IF) techniques. More conclusive evidence for a direct, antibody-independent interaction between C components and cytoplasmic structures is provided by the observation that incubation of the substrate with purified Clq followed by FITC-R/ Hu-Clq results in cytoplasmic staining of some of the skin cell populations described above.The phenomenon of C-binding adn activation on cytoplasmic structures of normal human skin cells may be a critical event in the initiation of complement mediated pathopysiological reactions of the skin

    The Gluon Propagator on a Large Volume, at β=6.0\beta=6.0

    Full text link
    We present the results of a high statistics lattice study of the gluon propagator, in the Landau gauge, at β=6.0\beta=6.0. As suggested by previous studies, we find that, in momentum space, the propagator is well described by the expression G(k2)=[M2+Zk2(k2/Λ2)η]1G(k^2)= \Big[ M^2 + Z\cdot k^2(k^2/\Lambda^2)^\eta\Big]^{-1} . By comparing G(k2)G(k^2) on different volumes, we obtain a precise determination of the exponent η=0.532(12)\eta=0.532(12), and verify that M2M^2 does not vanish in the infinite volume limit. The behaviour of η\eta and M2M^2 in the continuum limit is not known, and can only be studied by increasing the value of β\beta.Comment: 21 pages, uuencoded LATEX plus 5 postscript figures. ROME prep. 94/1042, SHEP prep. 93/94-3

    Divergent nematic susceptibility in an iron arsenide superconductor

    Full text link
    Within the Landau paradigm of continuous phase transitions, ordered states of matter are characterized by a broken symmetry. Although the broken symmetry is usually evident, determining the driving force behind the phase transition is often a more subtle matter due to coupling between otherwise distinct order parameters. In this paper we show how measurement of the divergent nematic susceptibility of an iron pnictide superconductor unambiguously distinguishes an electronic nematic phase transition from a simple ferroelastic distortion. These measurements also reveal an electronic nematic quantum phase transition at the composition with optimal superconducting transition temperature.Comment: 8 pages, 8 figure

    A Systematic Extended Iterative Solution for QCD

    Full text link
    An outline is given of an extended perturbative solution of Euclidean QCD which systematically accounts for a class of nonperturbative effects, while allowing renormalization by the perturbative counterterms. Proper vertices Gamma are approximated by a double sequence Gamma[r,p], with r the degree of rational approximation w.r.t. the QCD mass scale Lambda, nonanalytic in the coupling g, and p the order of perturbative corrections in g-squared, calculated from Gamma[r,0] - rather than from the perturbative Feynman rules Gamma(0)(pert) - as a starting point. The mechanism allowing the nonperturbative terms to reproduce themselves in the Dyson-Schwinger equations preserves perturbative renormalizability and is tied to the divergence structure of the theory. As a result, it restricts the self-consistency problem for the Gamma[r,0] rigorously - i.e. without decoupling approximations - to the superficially divergent vertices. An interesting aspect of the scheme is that rational-function sequences for the propagators allow subsequences describing short-lived excitations. The method is calculational, in that it allows known techniques of loop computation to be used while dealing with integrands of truly nonperturbative content.Comment: 48 pages (figures included). Scope of replacement: correction of a technical defect; no changes in conten

    Three-Nucleon Force and the Δ\Delta-Mechanism for Pion Production and Pion Absorption

    Full text link
    The description of the three-nucleon system in terms of nucleon and Δ\Delta degrees of freedom is extended to allow for explicit pion production (absorption) from single dynamic Δ\Delta de-excitation (excitation) processes. This mechanism yields an energy dependent effective three-body hamiltonean. The Faddeev equations for the trinucleon bound state are solved with a force model that has already been tested in the two-nucleon system above pion-production threshold. The binding energy and other bound state properties are calculated. The contribution to the effective three-nucleon force arising from the pionic degrees of freedom is evaluated. The validity of previous coupled-channel calculations with explicit but stable Δ\Delta isobar components in the wavefunction is studied.Comment: 23 pages in Revtex 3.0, 9 figures (not included, available as postscript files upon request), CEBAF-TH-93-0

    The pion-three-nucleon problem with two-cluster connected-kernel equations

    Get PDF
    It is found that the coupled piNNN-NNN system breaks into fragments in a nontrivial way. Assuming the particles as distinguishable, there are indeed four modes of fragmentation into two clusters, while in the standard three-body problem there are three possible two-cluster partitions and conversely the four-body problem has seven different possibilities. It is shown how to formulate the pion-three-nucleon collision problem through the integral-equation approach by taking into account the proper fragmentation of the system. The final result does not depend on the assumption of separability of the two-body t-matrices. Then, the quasiparticle method a' la Grassberger-Sandhas is applied and effective two-cluster connected-kernel equations are obtained. The corresponding bound-state problem is also formulated, and the resulting homogeneous equation provides a new approach which generalizes the commonly used techniques to describe the three-nucleon bound-state problem, where the meson degrees of freedom are usually suppressed.Comment: 20 pages, REVTeX, with 3 COLOR figures (PostScript

    Infrared behavior of the gluon propagator in lattice Landau gauge: the three-dimensional case

    Full text link
    We evaluate numerically the three-momentum-space gluon propagator in the lattice Landau gauge, for three-dimensional pure-SU(2) lattice gauge theory with periodic boundary conditions. Simulations are done for nine different values of the coupling β\beta, from β=0\beta = 0 (strong coupling) to β=6.0\beta = 6.0 (in the scaling region), and for lattice sizes up to V=643V = 64^3. In the limit of large lattice volume we observe, in all cases, a gluon propagator decreasing for momenta smaller than a constant value pdecp_{dec}. From our data we estimate pdec350p_{dec} \approx 350 MeV. The result of a gluon propagator decreasing in the infrared limit has a straightforward interpretation as resulting from the proximity of the so-called first Gribov horizon in the infrared directions.Comment: 14 pages, BI-TP 99/03 preprint, correction in the Acknowledgments section. To appear in Phys.Rev.

    Asymptotic Scaling and Infrared Behavior of the Gluon Propagator

    Get PDF
    The Landau gauge gluon propagator for the pure gauge theory is evaluated on a 32^3x64 lattice with a physical volume of (3.35^3x6.7)fm^4. Comparison with two smaller lattices at different lattice spacings allows an assessment of finite volume and finite lattice spacing errors. Cuts on the data are imposed to minimize these errors. Scaling of the gluon propagator is verified between beta=6.0 and beta=6.2. The tensor structure is evaluated and found to be in good agreement with the Landau gauge form, except at very small momentum values, where some small finite volume errors persist. A number of functional forms for the momentum dependence of the propagator are investigated. The form D(q^2)=D_ir+D_uv, where D_ir(q^2) ~ (q^2+M^2)^-\eta and D_uv is an infrared regulated one-loop asymptotic form, is found to provide an adequate description of the data over the entire momentum region studied - thereby bridging the gap between the infrared confinement region and the ultraviolet asymptotic region. The best estimate for the exponent \eta is 3.2(+0.1/-0.2)(+0.2/-0.3), where the first set of errors represents the uncertainty associated with varying the fitting range, while the second set of errors reflects the variation arising from different choices of infrared regulator in D_uv. Fixing the form of D_uv, we find that the mass parameter M is (1020+/-100)MeV.Comment: 37 pages, RevTeX, 16 postscript figures, 7 gif figures. Revised version accepted for publication in Phys. Rev. D. Model functions and discussion of asymptotic behaviour modified; all model fits have been redone. This paper, including postscript version of all figures, can be found at http://www.physics.adelaide.edu.au/~jskuller/papers
    corecore