The description of the three-nucleon system in terms of nucleon and Δ
degrees of freedom is extended to allow for explicit pion production
(absorption) from single dynamic Δ de-excitation (excitation) processes.
This mechanism yields an energy dependent effective three-body hamiltonean. The
Faddeev equations for the trinucleon bound state are solved with a force model
that has already been tested in the two-nucleon system above pion-production
threshold. The binding energy and other bound state properties are calculated.
The contribution to the effective three-nucleon force arising from the pionic
degrees of freedom is evaluated. The validity of previous coupled-channel
calculations with explicit but stable Δ isobar components in the
wavefunction is studied.Comment: 23 pages in Revtex 3.0, 9 figures (not included, available as
postscript files upon request), CEBAF-TH-93-0