Abstract

The description of the three-nucleon system in terms of nucleon and Δ\Delta degrees of freedom is extended to allow for explicit pion production (absorption) from single dynamic Δ\Delta de-excitation (excitation) processes. This mechanism yields an energy dependent effective three-body hamiltonean. The Faddeev equations for the trinucleon bound state are solved with a force model that has already been tested in the two-nucleon system above pion-production threshold. The binding energy and other bound state properties are calculated. The contribution to the effective three-nucleon force arising from the pionic degrees of freedom is evaluated. The validity of previous coupled-channel calculations with explicit but stable Δ\Delta isobar components in the wavefunction is studied.Comment: 23 pages in Revtex 3.0, 9 figures (not included, available as postscript files upon request), CEBAF-TH-93-0

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 02/01/2020