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Asymptotic scaling and infrared behavior of the gluon propagator
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The Landau gauge gluon propagator for the pure gauge theory is evaluated on a 323364 lattice with a
physical volume of (3.35336.7) fm4. Comparison with two smaller lattices at different lattice spacings allows
an assessment of finite volume and finite lattice spacing errors. Cuts on the data are imposed to minimize these
errors. Scaling of the gluon propagator is verified betweenb56.0 andb56.2. The tensor structure is evalu-
ated and found to be in good agreement with the Landau gauge form, except at very small momentum values,
where some small finite volume errors persist. A number of functional forms for the momentum dependence of
the propagator are investigated. The formD(q2)5D IR1DUV , whereD IR(q2)}(q21M2)2h and DUV is an
infrared regulated one-loop asymptotic form, is found to provide an adequate description of the data over the
entire momentum region studied — thereby bridging the gap between the infrared confinement region and the
ultraviolet asymptotic region. The best estimate for the exponenth is 3.220.2

10.1
20.3
10.2, where the first set of errors

represents the uncertainty associated with varying the fitting range, while the second set of errors reflects the
variation arising from different choices of infrared regulator inDUV . Fixing the form ofDUV , we find that the
mass parameterM is (10206100) MeV. @S0556-2821~99!05119-X#

PACS number~s!: 12.38.Gc, 11.15.Ha, 12.38.Aw, 14.70.Dj
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I. INTRODUCTION

Over the years, the infrared behavior of the gluon pro
gator has been studied using a variety of approaches,
with widely differing results. Gribov@1# argued that by re-
stricting the functional integral to eliminate gauge copi
one would obtain a gluon propagator which vanishes in
infrared. Stingl@2# found that this solution was consiste
with the gluon Dyson-Schwinger equation~DSE!, when ig-
noring the 4-gluon vertex and placing certain restrictions
the remaining vertices. Recent studies of the coupled g
and gluon DSEs@3,4# support this conclusion, in principle i
not in detail. On the other hand, DSE studies of the glu
self-energy@5–7# ~ignoring the role of ghosts! have resulted
in a gluon propagator which is strongly enhanced in the
frared. Occupying the ‘‘middle ground’’ between these po
tions, Cornwall@8# has used a gauge invariant ‘‘pinch tec
nique’’ DSE to obtain a dynamical gluon mass. For a rec
review of DSEs, see Ref.@9#.

The infrared behavior of the gluon propagator is oft
considered to be crucial to confinement. Both the infrar
vanishing and the infrared-enhanced solutions have bee
gued to provide mechanisms for confinement. It has e
been argued@10# that an infrared-enhanced gluon propaga
is a necessarycondition for confinement. Clearly then,
settlement of this issue should allow us to shed some ligh
the problem of confinement.

Lattice field theory provides a model-independent,ab ini-
tio approach to QCD, and can in principle answer this qu

*Member of the UKQCD Collaboration.
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tion. However, previous lattice studies of the gluon propa
tor in Landau gauge@11,12# have been inconclusive. Th
reason for this is that the lowest non-trivial momentum va
accessible on a finite lattice is inversely proportional to
length of the box. The region of interest is likely to be belo
1 GeV. Reference@12# used a lattice with a spatial length o
2.5 fm and a length of 5 fm in the time direction, givin
access in principle to momentum values down to 250 Me
However, finite volume effects could be shown to be sign
cant at least up to approximately 500 MeV on this lattic
thereby casting doubt on the validity of the results in t
infrared. In this study we increase the lattice size to 3.35
in the spatial directions and 6.7 fm in the time directio
giving access to momenta deeper in the infrared and sig
cantly reducing finite volume effects. Preliminary results c
be found in Ref.@13#. We have also compared the results f
this lattice to those obtained on a smaller volume and u
anisotropies in the data to assess finite volume effects. H
ever, an extrapolation to infinite volume has not been
tempted.

The structure of this paper is as follows: In Sec. II w
present our method for calculating the gluon propagator
the lattice, as well as the notation we use. The details of
simulations are given in Sec. III. In Sec. IV we discuss ho
to handle finite volume and finite lattice spacing artefac
The majority of our results can be found in Sec. V. Sect
V A discusses the tensor structure. In Sec. V B t
asymptotic behavior is studied, and in Sec. V C we fit t
gluon propagator as a function of momentum to vario
functional forms. Finally, in Sec. VI we discuss the signi
cance of our results.
©1999 The American Physical Society07-1
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II. GLUON PROPAGATOR ON THE LATTICE

A. Definitions and notation

The gauge linksUm(x)PSU(3) may be expressed i
terms of the continuum gluon fields as

Um~x!5P expS ig0E
x

x1m̂
Am~z!dzD

5eig0aAm(x1m̂/2)1O~a3!, ~2.1!

whereP denotes path ordering. From this, the dimensionl
lattice gluon fieldAm

L (x) may be obtained via

Am
L ~x1m̂/2!5

1

2ig0
@Um~x!2Um

† ~x!#

2
1

6ig0
Tr @Um~x!2Um

† ~x!#, ~2.2!

which is accurate toO(a2). The discrete momentaq̂ avail-
able on a finite, periodic volume of lengthLm in the m di-
rection are given by

q̂m5
2pnm

aLm
, nm52~ 1

2 Lm21!,...,1~ 1
2 Lm!. ~2.3!

The momentum space gluon field is

Am~ q̂![(
x

e2 i q̂•(x1m̂/2)Am
L ~x1m̂/2!

5
e2 i q̂ma/2

2ig0
F @Um~ q̂!2Um

† ~2q̂!#

2
1

3
Tr @Um~ q̂!2Um

† ~2q̂!#G , ~2.4!

where Um(q̂)[(xe
2 i q̂xUm(x), Am(q̂)[taAm

a (q̂), and ta

[la/2 are the generators of the SU~3! Lie algebra. This
definition differs by a term ofO(a) from the one usually
found in the literature, whereUm(x)5exp@ig0Am8 (x)#, which

gives Am8 (q̂)5exp(iq̂ma/2)Am(q̂)5Am(q̂)1O(a). The di-

mensionless lattice gluon propagatorDmn
L,ab(q̂) is defined by

^Am
a ~ q̂!An

b~2q̂8!&5Vd~ q̂2q̂8!Dmn
L,ab~ q̂!, ~2.5!

whereV is the lattice volume.
The continuum, infinite-volume gluon propagator in a c

variant gauge with gauge parameterj has the form

Dmn
ab~q!5S dmn2

qmqn

q2 D dabD~q2!1j
qmqn

q2
dab

1

q2
.

~2.6!

The scalar functionD(q2) can be extracted fromDmn
ab(q) by
09450
s

-

D~q2!5
1

3 S F(
m

1

8 (
a

Dmm
aa ~q!G2

j

q2D . ~2.7!

This expression is also valid on a finite volume, providedq is
not too close to zero. The finite volume induces an effect
‘‘mass’’ m;1/L which becomes significant forq sufficiently
close to 0. In this case, the most general form possible for
tensor structure is

Dmn
ab~q!5S dmn2

hmn~q!

f ~q2!
D dabD~q2!1jdab

hmn8 ~q!

g~q2!
,

~2.8!

where f (q2)→q2, g(q2)→q4, andhmn andhmn8 →qmqn for
sufficiently largeq, but f (q2) andg(q2) go to finite values
for q50. In the following, we will work in the Landau
gauge,j50, and we will only attempt fits to lattice data fo
which finite size effects can be shown to be small.

A well-known lattice artifact is that the tree level prop
gator of a massless scalar boson field does not reproduc
expected continuum result of

D (0)~q2!5
1

q2
, ~2.9!

but rather produces

D (0)~ q̂!5
1

(
m

@~2/a!sinq̂ma/2#2

. ~2.10!

Since QCD is asymptotically free, we expect thatq2D(q2)
→1 up to logarithmic corrections asq2→`. To ensure this
result we work with a momentum variable defined as1

qm[
2

a
sin

q̂ma

2
. ~2.11!

In the infrared region of greatest interest, the choice ofq vs
q̂ makes little difference in the results.

B. Renormalization

The bare, dimensionless lattice gluon propagatorDL(qa)
is related to the renormalized continuum propaga
DR(q;m) via

a2DL~qa!5Z3~m,a!DR~q;m!. ~2.12!

The renormalization constantZ3(m,a) is determined by im-
posing a renormalization condition at some chosen renorm
ization scalem, e.g.,

1The momentaq and q̂ are often defined the other way around
the lattice literature. However, we feel it is more instructive here
defineq as above, such that lattice results reproduce the continu
formula ~2.6! and the tree level formula~2.9!.
7-2
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ASYMPTOTIC SCALING AND INFRARED BEHAVIOR OF . . . PHYSICAL REVIEW D 60 094507
DR~q!uq25m25
1

m2
. ~2.13!

The renormalized gluon propagator can be computed b
non-perturbatively on the lattice and perturbatively in t
continuum for choices of the renormalization point in t
ultraviolet. It can then be related to the propagator in ot
continuum renormalization schemes, such as the mod
minimal subtraction schemeMS.

C. Gauge fixing

The lattice implementation of the Landau gauge is ba
on a variational principle. In continuum language, this can
seen by defining for any generic field configurationAm(x)
the following functional on the group of gauge transform
tions:

FA
c @g#5iAgi25E d4x Tr @Am

g ~x!#2, ~2.14!

where

Am
g ~x!5g21~x!Am~x!g~x!2g21~x!]mg~x!,

g~x!PSU~3!. ~2.15!

By considering gauge transformations of the form

g8~x!5g~x!eiv(x)5g~x!eit ava(x) ~2.16!

and expanding to second order inv, it can be shown that

FA
c @g8#5FA

c @g#22i E d4x Tr @Am
g ~x!]mv~x!#

2E d4x Tr (
a

va~x!~O@Ag#v!a~x!1O~v3!.

~2.17!

This implies thatFA
c @g# is stationary whenAm

g (x) satisfies
the Landau gauge condition]•Ag50. If Ag is in the Landau
gauge, the operator appearing in the quadratic term of
~2.17! is O@Ag#[FP@Ag#, i.e. the Faddeev-Popov operat
in the Landau gauge:

~FP@Ag# !xy
ab52@]•]dab1 f abcAg

m
c ~x!]m#d4~x2y!.

~2.18!

Since configurations corresponding to local minima
FA

c @g# satisfy the gauge condition, Landau gauge fields m
be constructed from a generic configurationAm(x) by mini-
mizing FA

c @g#. This can be implemented in a quite straigh
forward way on the lattice: a suitable discretization ofFA

c @g#
is given by

FU
L @g#512(

m,x
Re Tr Um

g ~x!, ~2.19!

where
09450
th

r
d

d
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Um
g ~x!5g~x!Um~x!g†~x1m̂ !. ~2.20!

FU
L @g# can be minimized numerically~for a review, see Ref.

@14#!, and the resulting link configurations satisfy

u5
1

VNc
(

x
u~x!5

1

VNc
(

x
Tr @D~x!D†~x!#50,

~2.21!

whereD(x) is the lattice four-divergence of the gluon field

D~x!5(
m

@Am
L ~x1m̂/2!2Am

L ~x2m̂/2!#

[(
m

@Am8 ~x!2Am8 ~x2m̂ !#. ~2.22!

In momentum space, the lattice Landau gauge condi
D(x)50 reads

(
m

qmAm~q!50, ~2.23!

using the definition ofq in Eq. ~2.11!. It is worth noting that
Eq. ~2.23! only holds if one defines the gluon field accordin
to Eq. ~2.2!. If the asymmetric definitionA8 is used instead,
then Eq.~2.23! is replaced by

(
m

~ i sinq̂m112cosq̂m!Am8 ~ q̂!50. ~2.24!

In the limit a→0 the continuum Landau gauge condition
recovered withO(a2) corrections if one uses the field de
fined in Eq.~2.2! and with O(a) corrections ifA8 is used.
This makes Eq.~2.2! the preferred definition.

Coming back to the continuum formulation, it is we
known that in non-Abelian gauge theories, given a typi
~regularized! field configurationAm(x), the functionalFA

c @g#
will in general have multiple stationary points. These cor
spond to distinct configurations~Gribov copies!, related to
each other by gauge transformations, which all satisfy
Landau gauge condition. This is a consequence of the
that the Faddeev-Popov operator~2.18! is not positive defi-
nite. In particular, it can be shown that multiple local minim
can occur, so that local minimization ofFA

c @g# does not fix
the gauge uniquely. This feature of the theory is preserved
the lattice@15#, as it turns out thatFU

L @g# can have multiple
stationary points~lattice Gribov copies!, and in particular
multiple local minima.

Some possible solutions to this problem have been s
gested in the literature, mainly aiming to identify the glob
minimum of the gauge-fixing functional~see for example
Ref. @16#!. At present, the problem is still open. Howeve
from the point of view of quantum theory, the relevant iss
is to quantify the numerical impact of the residual gau
freedom on gauge-fixed correlation functions. In the fram
work of a Monte Carlo simulation, one may look for th
signature of gauge uncertainty as a ‘‘noise’’ effect, in ad
tion to the purely statistical uncertainty. Previous stud
7-3
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TABLE I. Simulation parameters. The values for the string tensionaAK are taken from Ref.@23#, and the
lattice spacings are calculated using the ‘‘physical’’ valueAs5427 MeV for the string tension. The sepa
ration is the total number of updates~Cabibbo-Marinari or over-relaxation! separating the configurations.^U&
is the average link(x,mRe Tr Um(x)/(4VNc).

Name b aAK a21 (GeV) Volume Nconfig Separation umax ^U&

Small 6.0 0.2265~55! 1.885~45! 163348 125 800 10212 0.860939~31!

Large 6.0 0.2265~55! 1.885~45! 323364 75 1000 10212 0.861793~15!

Fine 6.2 0.1619~19! 2.637~30! 243348 223 2400 10212 0.873948~15!
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@17,18# indicate that this effect is negligible for most gau
dependent quantities including the gluon propagator.2 For the
purpose of the present investigation we shall therefore
sume that for the gluon propagator, the numerical uncerta
associated with Gribov copies effects provides only a sm
contribution to the overall error bars.

In the continuum formulation of the Abelian gauge theo
there is no Gribov problem, as the Faddeev-Popov oper
reduces to a positive definite, field-independent one. H
ever, it is interesting to notice that abelian Gribov cop
may appear on the lattice@19#, due to the structure of the
lattice Faddeev-Popov operator.

III. SIMULATION PARAMETERS AND METHODS

The details of the simulations are given in Table I.
short, we analyze three lattices, two atb56.0 and one atb
56.2, and denote these as the ‘‘large,’’ ‘‘small’’ and ‘‘fine
lattices respectively. The gauge configurations are gener
using a combination of the over-relaxation and Cabib
Marinari algorithms. All three lattices are fixed to Landa
gauge using a Fourier accelerated steepest descent algo
@20#.

To double-check the gauge fixing we also consid
(xWA4(xW ,t), which should be constant in time when usin
periodic boundary conditions,

] t(
xW

A4~xW ,t !52(
xW

] iAi~xW ,t !50, ~3.1!

2The infrared behavior of the ghost propagator may be more
sitive to the removal of Gribov copies@18#.
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where we have introduced the shorthand notation

] tA4~xW ,t ![A4
L~xW ,t1a/2!2A4

L~xW ,t2a/2! ~3.2!

] iAi~xW ,t ![Ai
L~xW1êi /2,t !2Ai

L~xW2êi /2,t !.
~3.3!

In Fig. 1 we show typical values of(xWA4(xW ,t) for both the
small and large lattices. As one can see, the time compo
of the gluon field is constant to 1 part in 10000. Note that
value of one of the color components of the gluon field h
no significance in itself, although the fact that it is consta
in time has.

IV. FINITE SIZE EFFECTS AND ANISOTROPIES

We begin by considering the effect of the kinematic co
rection introduced through the change of variables in E
~2.11!. In the absence of this correction, data in the hi
momentum region are expected to exhibit significant anis
ropy when shown as a function ofq̂. This is confirmed in
Fig. 2, which shows the gluon propagator multiplied byq̂2a2

and plotted as a function ofq̂a. Here and in the following, a
Z3 averaging is performed on the data, where for exam
the momentum along (x,y,z,t)5(2,1,1,1) is averaged with
~1,1,2,1! and ~1,2,1,1! and the corresponding negatively or
ented momenta.

In Fig. 3 the gluon propagator multiplied byq2a2 is dis-
played as a function ofqa. We see that the kinematic cor
rection results in a significant reduction in anisotropy in t
large momentum region, forqa.1.5. The effect of the kine-
matic correction is even clearer for the fine lattice, as d

n-
FIG. 1. Plots of the~1,1! color

component of (xWA4(xW ,t) as a
function of t for one gauge fixed
configuration on the small lattice
~left!, and on the large lattice
~right!.
7-4
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played in Figs. 4 and 5. We expect anisotropy arising fr
finite lattice spacing artifacts to be reduced on this latti
when the lattice results are compared at the same phy
value of q. Rescaling these figures3 and comparing them a
the same physical momenta shows a reduction in the an
ropy compared to the small lattice in both cases. Howe
this reduction is considerably smaller than the one resul
from applying the kinematic correction on the fine lattice

At lower momenta, finite volume effects become sign
cant. These effects are greatest when one or more of
momentum components is zero. Because of the une
length of the time and spatial axes on our lattices, there
clear difference not only between on- and off-axis points,
also between the points where three of the components
zero, depending on whether or not one of these lies along

3Recall that the small to fine lattice spacing ratio isas /af51.4.

FIG. 2. The gluon propagator from the small lattice multipli

by q̂2a2 plotted as a function of momentaq̂a. Values for each
momentum direction are plotted separately. Only aZ3 averaging
has been performed. Solid squares denote momenta directed
spatial axes, while solid triangles denote momenta directed a
the time axis. Other momenta are indicated by open circles.

FIG. 3. The gluon propagator from the small lattice multipli
by q2a2 plotted as a function of momentaqa. The symbols are as in
Fig. 2.
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‘‘long’’ time axis. In Figs. 3 and 5 this is shown by th
discrepancy between the solid squares~denoting momenta
along one of the spatial axes! and solid triangles~denoting
momenta along the time axis!.

Figure 6 displays the gluon propagator data for all m
mentum directions and values on the large lattice, using
kinematic correction. Again, only aZ3 averaging has been
performed. Examination of the infrared region indicates t
finite volume artifacts are very small on the large lattice.
particular, the agreement between purely spatial~solid
squares! and time-like momentum vectors~solid triangles! at
qa50.20 appears to indicate that finite size effects are re
tively small here.

Some residual anisotropy remains for both the large
small lattices at moderate momenta aroundqa;1.5, despite
including the kinematic correction of Eq.~2.11!. This anisot-
ropy is clearly displayed in Fig. 3 by the solid squares a
triangles denoting momenta directed along lattice axes ly
below the majority of points from off-axis momenta forqa
;1.4. Since tree-level O~4! breaking effects should be re
moved by the kinematic correction, the remaining anisotro
appears to have its origin in quantum effects beyond t

ng
g

FIG. 4. The gluon propagator from the fine lattice multiplied

q̂2a2 plotted as a function of momentaq̂a. The symbols are as in
Fig. 2.

FIG. 5. The gluon propagator from the fine lattice multiplied
q2a2 plotted as a function of momentaqa. The symbols are as in
Fig. 2.
7-5
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LEINWEBER, SKULLERUD, WILLIAMS, AND PARRINELLO PHYSICAL REVIEW D60 094507
level. This anisotropy is significantly reduced for the fi
lattice, indicating that it is an effect of finite lattice spacin
errors as opposed to finite volume errors. The fact tha
occurs at the same momentum values and with the s
magnitude on both the large and small lattices atb56.0
lends further support to this interpretation.

In order to minimize lattice artifacts for large momentu
components we select momentum vectors lying within a c
inder directed along the diagonal (x,y,z,t)5(1,1,1,1) of the
lattice. This allows one to access the largest of momenta w
the smallest of components. We calculate the distanceDq̂ of
the momentum vectorq̂ from the diagonal using

Dq̂5uq̂usinu q̂ , ~4.1!

where the angleu q̂ is given by

cosu q̂5
q̂•n̂

uq̂u
, ~4.2!

and n̂5 1
2 (1,1,1,1) is the unit vector along the diagonal.

On the small lattice, we found that the selection of a c
inder with a radius of one spatial momentum unit (Dq̂a,1
32p/Ls , whereLs is the number of sites along a spati
axis! provides a reasonable number of points falling alon
single curve for large momenta. The data surviving this
are displayed in Fig. 7. For the large lattice the correspo
ing physical cut dictates that all momenta must lie within
cylinder of radius two spatial momentum units direct
along the lattice diagonal. Figure 8 displays the data sur
ing this cut. Figure 9 shows the data surviving the cor
sponding cut on the fine lattice, using a radius of 1.5 mom
tum units, which provides a similar physical radius.

FIG. 6. The gluon propagator from the large lattice multipli
by q2a2 plotted as a function of momentaqa. Values for each
momentum direction are plotted separately. Only aZ3 averaging
has been performed for the data shown in this figure. Plotting s
bols are as in Fig. 2. Finite volume errors are greatly reduced c
pared to the results from the smaller lattice, as displayed by
overlap of points obtained from spatial and time-like moment
vectors. However, significant anisotropy is apparent for larger m
menta.
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This cut does not address the large finite volume err
surviving in Fig. 7. To remove these problematic momen
we consider a further cut designed to remove momen
vectors which have one or more vanishing components. T
is implemented by keeping only momentum directions t
lie within a certain angleumax from the diagonal, i.e., by
keepingu q̂,umax whereu q̂ is given by Eq.~4.2!. We found
that a cone of semivertex angleumax520° was sufficient to
provide a set of points lying along a smooth curve. The so
points in Fig. 7 represent these data.

Since finite volume errors on the large lattice are smal
is not necessary to impose the additional cone cut th
However, it is interesting to note that even with this cons
vative cut, illustrated by the solid points in Fig. 8, the tur
over in q2a2D(q2) in the infrared region is still observed.

-
-
e

-

FIG. 7. The gluon propagator from the small lattice multiplie
by q2a2. The points displayed in this plot lie within a cylinder o

radius Dq̂a,132p/16 directed along the diagonal (x,y,z,t)
5(1,1,1,1) of the lattice. The solid points also lie within a cone
20° measured from the diagonal at the origin.

FIG. 8. The gluon propagator from the large lattice multipli
by q2a2. The points displayed in this plot lie within a cylinder o

radiusDq̂a,232p/32 directed along the diagonal of the lattic
The solid points also lie within a cone of 20° measured from
diagonal at the origin.
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V. RESULTS

A. Tensor structure

Using the Landau gauge condition~2.23!, we can infer
that the lattice gluon propagatorDmn

L (q)[ 1
8 (aDmn

L,aa(q)
should have the following tensor structure, mirroring t
continuum form~2.6!:

Dmn
L ~q!5S dmn2

qmqn

q2 D DL~q2!. ~5.1!

By studying the tensor structure of the gluon propagator,
may be able to determine how well the Landau gauge c
dition is satisfied, and also discover violations of continuu
rotational invariance. The tensor structure may be evalua
directly by taking the ratios of different components
Dmn

L (q) for the same value ofq. The results for moderate t
high momentum values, where we expect Eq.~5.1! to be
valid, are summarized in Tables II–IV, and compared
what one would expect from Eq.~5.1!, and to what one
would obtain by replacingq with q̂ in Eq. ~5.1!. For the
small and fine lattices, we have also evaluated the ten
structure using the unfavored asymmetric definitionA8 of the
gluon field.

The selected momentum values in Tables II–IV are not
exhaustive list, but are representative of the respective
mentum regimes. It is clear from these tables that our
merical data are consistent with the expectation from
~5.1!. In particular, where two of the components ofq are
zero, this relation is satisfied with a very high degree
accuracy. Where 3 or 4 of the components are non-zero
errors are larger, but in most cases smaller than 10%. We
also see that, in general, the asymmetric definitionA8 of the
gluon field gives results which are inconsistent with th
form.

At very low momentum values, we expect finite volum
effects to lead to violations of the infinite-volum
continuum-limit form~5.1!. Tables V–VII show selected ra

FIG. 9. The gluon propagator from the fine lattice multiplied
q2a2. The points displayed in this plot lie within a cylinder o

radiusDq̂a,1.532p/32 directed along the diagonal of the lattic
The solid points also lie within a cone of 20° measured from
diagonal at the origin.
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tios of components for the lowest momentum values, d
playing, in some cases, significant violations of this form.
particular, the ratio of them54 ~time! component of the
diagonalDmm

L (q) to the other diagonal components is co
siderably larger than what one would get from Eq.~5.1!. The
discrepancy is smaller on the large lattice than on the o
two lattices, but is still significant at these lowest momen
This gives us a more rigorous test of finite volume effe
than what we could obtain by inspection in Sec. IV, whe
finite volume effects were not obvious for the large lattice

At zero momentum Eq.~5.1! is not well defined, and the
finite volume replacement Eq.~2.8! ~with j50) must be
used instead. The exact behavior of the functionshmn(q) and
f (q2) with q and V is not known, but any deviation from
Dmn(q50)}dmn must be due to finite volume effects inhmn

of Eq. ~2.8!. Table VIII shows the ratios of the diagona
elements for our three lattices. As we can see, them54
component is in all cases much smaller than the other th
components, although the discrepancy is considerably
duced from the small to the large lattice. The small and fi
lattices have a ratioDii /D44 of 3 and 2 respectively, which is
equal to the ratioLt /Li . For the large lattice, withLt /Li

52, Dii
L /D44

L '1.4, indicating the reduction of finite volum
errors at zero momentum.

B. Asymptotic behavior

The asymptotic behavior of the renormalized glu
propagator in the continuum is given to one-loop level
@5,21#

DR~q2;m![Dbare~qa!/Z3~m,a!;
Z

q2 S 1

2
ln~q2/L2! D 2dD

,

~5.2!

where the constantZ depends on the renormalization schem
and the renormalization pointm, and4

dD5
3929j24Nf

2~3322Nf !
. ~5.3!

In the case we are studying here, both the gauge paramej
and the number of fermion flavorsNf are zero, sodD
513/22.

1. Fits to the asymptotic form

We have fitted the data, with the kinematic correction,
all our three lattices to the asymptotic form in Eq.~5.2! for
values ofq above;2.7 GeV. For the large lattice, we hav
used the data surviving the cylindrical cut, while for th
other two lattices, both cylindrical and cone cuts have be
imposed. Table IX shows the parameter values for the m
inclusive of those fits. Other regimes are selected to facilit

4This expression differs by a factor of 2 from the~incorrect! ex-
pression given in Ref.@22#, which is also quoted in Ref.@9#.

e
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TABLE II. Tensor structure for the small lattice.q̂ is in units of 2p/Ls , whereLs is the spatial length of
the lattice. The theoretical predictions are the values for the ratios one obtains from Eq.~5.1!, and from Eq.

~5.1! with q→q̂. The numbers in brackets are the statistical uncertainties in the last digit~s!. Where no error
is quoted, the statistical uncertainty is less than 1026. The values obtained using the asymmetric gluon fi
definition A8 are only shown where they differ from the value usingA.

Theoretical prediction This simulation

@ q̂x ,q̂y ,q̂z ,q̂t# Components Using q̂ Using q Using A Using A8

@2,1,0,0# ~1,1!/~1,2! 20.5 20.509796 20.509796 20.519783
~1,1!/~2,2! 0.25 0.259892 0.259892 0.259892
~1,1!/~3,3! 0.2 0.206281 0.204~8! 0.204~8!

~1,1!/~4,4! 0.2 0.206281 0.199~9! 0.199~9!

~1,2!/~2,2! 20.5 20.509796 20.509796 20.5
~1,2!/~3,3! 20.4 20.404634 20.40(2) 20.38(2)

@4,1,0,0# ~1,1!/~1,2! 20.25 20.275899 20.275899 20.331821
~1,1!/~2,2! 0.0625 0.0761205 0.0761205
~1,2!/~2,2! 20.25 20.275899 20.275899 20.229402
~1,2!/~3,3! 20.2353 20.256383 20.277(12) 20.231(10)

@4,2,0,0# ~1,1!/~1,2! 20.5 20.541196 20.541196 20.585786
~1,1!/~2,2! 0.25 0.292893 0.292893
~1,1!/~3,3! 0.2 0.226541 0.22~1!

~1,2!/~2,2! 20.5 20.541196 20.541196 20.5

@2,1,1,0# ~1,1!/~1,2! 21 21.01959 21.01(2) 21.03(2)
~1,1!/~2,2! 0.4 0.412562 0.411~15!

~1,1!/~3,3! 0.4 0.412562 0.418~14!

~1,2!/~2,2! 20.4 20.404634 20.407(10) 20.398(11)

@4,2,1,0# ~1,1!/~1,2! 20.625 20.681848 20.678(9) 20.743(10)
~1,1!/~2,2! 0.2941 0.342911 0.339~7!

~1,1!/~2,3! 22.5 22.47137 22.3(4) 22.5(5)
~1,3!/~3,3! 20.2 20.213397 20.208(10) 20.187(11)

@4,2,1,1/3# ~1,1!/~1,2! 20.6389 20.697656 20.695(9) 20.750(10)
~1,1!/~2,2! 0.2987 0.348094 0.348~8!

~1,1!/~4,4! 0.2434 0.275796 0.288~13!

~1,2!/~2,2! 20.4675 20.498947 20.500(7) 20.464(7)
~1,3!/~2,2! 20.2338 20.254361 20.25(2) 20.20(2)
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comparisons between the three lattices. The largest re
providing x2/Nd f.1 is also indicated.

We see that the asymptotic form fits the data quite w
although the relatively highx2 for the fits beginning atq
;2.7 GeV may be taken as a sign that there are still sign
cant nonperturbative and/or higher loop contributions to
propagator at this momentum scale. The values for the s
parameterL are reasonably consistent for the twob values,
although the variation inL between different lattices and fi
ranges indicates that the one-loop perturbative form is
not valid even atq2525 GeV2.

2. Matching results for the two lattice spacings

Since the renormalized propagatorDR(q;m) is indepen-
dent of the lattice spacing when the lattice spacing is fi
enough~i.e., in the scaling regime!, we can use Eq.~2.12! to
09450
on

l,

-
e
le

ill

e

derive a simple,q-independent expression for the ratio of th
unrenormalized lattice gluon propagators at the same ph
cal value ofq:

D f
L~qaf !

Dc
L~qac!

5
Z3~m,af !DR~q;m!/af

2

Z3~m,ac!DR~q;m!/ac
2

5
Zf

Zc

ac
2

af
2

~5.4!

where the subscriptf denotes the finer lattice (b56.2 in this
study! and the subscriptc denotes the coarser lattice (b
56.0). We can use this relation to study directly the scal
properties of the lattice gluon propagator by matching
data for the two values ofb. This matching can be per
formed by adjusting the values for the ratiosRZ5Zf /Zc and
Ra5af /ac until the two sets of data lie on the same curve
should be emphasized that this procedure matches the la
data directly, and does not depend on a functional form
the gluon propagator.
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TABLE III. Tensor structure for the large lattice.q̂ is given in units of 2p/Ls , whereLs is the spatial

length of the lattice. Since the spatial length of this lattice is twice that of the small lattice, the valuesq̂
must be multiplied by 2 when comparing these values with those of Table II.

Theoretical prediction This simulation

@ q̂x ,q̂y ,q̂z ,q̂t# Components Using q̂ Using q Using A

@2,1,0,0# ~1,1!/~1,2! 20.5 20.502419 20.502419
~1,1!/~2,2! 0.25 0.252425 0.252425
~1,1!/~3,3! 0.2 0.201549 0.217~13!

~1,2!/~3,3! 20.4 20.401157 20.43(3)

@8,4,0,0# ~1,1!/~1,2! 20.5 20.541196 20.541196
~1,1!/~2,2! 0.25 0.292893 0.292893
~1,1!/~3,3! 0.2 0.226541 0.21~1!

@8,4,2,0# ~1,1!/~1,2! 20.625 20.681848 20.691(12)
~1,1!/~2,2! 0.2941 0.342911 0.351~11!

~1,2!/~2,2! 20.4706 20.502914 20.508(9)
~1,3!/~3,3! 20.2 20.213397 20.223(15)

@8,2,1,1/2# ~1,1!/~1,2! 20.3281 20.362996 20.360(6)
~1,1!/~4,4! 0.07609 0.0914336 0.085~4!

~1,2!/~2,2! 20.2452 20.269425 20.265(5)
~1,3!/~2,2! 20.1226 20.135364 20.134(11)
t
ol
ee
tc
e
ot

ac-
an
In this study, we have used the fine and small lattices
perform this matching, as they have similar physical v
umes. The combination of cylindrical and cone cut has b
applied to both data sets. We have implemented the ma
ing by making a linear interpolation of the logarithm of th
data plotted against the logarithm of the momentum for b
09450
o
-
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h

data sets. In this way the scaling of the momentum is
counted for by shifting the fine lattice data to the right by
amountDa as follows:

ln Dc
L@ ln~qac!#5 ln D f

L@ ln~qac!2Da#1DZ . ~5.5!
TABLE IV. Tensor structure for the fine lattice.

Theoretical prediction This simulation

@ q̂x ,q̂y ,q̂z ,q̂t# Components Using q̂ Using q Using A Using A8

@2,1,0,0# ~1,1!/~1,2! 20.5 20.504314 20.504315 20.508666
~1,1!/~2,2! 0.25 0.254333 0.254333
~1,2!/~2,2! 20.5 20.504314 20.504315 20.5
~1,2!/~3,3! 20.4 20.402058 20.405(14) 20.402(14)

@6,1,0,0# ~1,1!/~1,2! 20.1667 20.184592 20.184592 20.232673
~1,2!/~2,2! 20.1667 20.184592 20.184592 20.146447
~1,2!/~3,3! 20.1622 20.178509 20.183(6) 20.145(5)

@6,3,0,0# ~1,1!/~1,2! 20.5 20.541196 20.541196 20.585786
~1,1!/~2,2! 0.25 0.292893 0.292893
~1,1!/~3,3! 0.2 0.226541 0.226~7!

~1,2!/~2,2! 20.5 20.541196 20.541196 20.5

@6,3,1,0# ~1,1!/~1,2! 20.5556 20.604157 20.605(4) 20.655(4)
~1,1!/~2,2! 0.2703 0.316193 0.318~4!

~1,3!/~3,3! 20.1333 20.142774 20.149(8) 20.118(8)

@6,3,1,1# ~1,1!/~1,2! 20.6111 20.667118 20.666(7) 20.717(8)
~1,1!/~4,4! 0.2391 0.27208 0.270~9!

~1,2!/~2,2! 20.4737 20.506668 20.500(5) 20.464(5)
~1,3!/~2,2! 20.1579 20.172815 20.188(14) 20.147(12)
7-9
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HereDZ is the amount by which the fine lattice data must
shifted up to provide the optimal overlap between the t
data sets. The matching of the two data sets has been
formed for values ofDa separated by a step size of 0.001.DZ
is determined for each value ofDa considered, and the opti
mal combination of shifts is identified by searching for t
global minimum ofx2/Nd f . The ratiosRa andRZ are related
to Da andDZ by

Ra5e2Da, RZ5Ra
2e2DZ. ~5.6!

TABLE V. Tensor structure for low momentum values on t
small lattice.

@ q̂x ,q̂y ,q̂z ,q̂t# Components
Ratio according

to Eq. ~5.1! This simulation

@1,0,0,0# ~2,2!/~3,3! 1 1.01~5!

~2,2!/~4,4! 1 1.24~6!

~3,3!/~4,4! 1 1.23~6!

@0,0,1,0# ~1,1!/~4,4! 1 1.25~5!

~2,2!/~4,4! 1 1.32~6!

@1,0,0,1/3# ~1,1!/~2,2! 0.101034 0.083~4!

~2,2!/~4,4! 1.11239 1.35~7!

~3,3!/~4,4! 1.11239 1.36~6!

@1,0,0,2/3# ~1,1!/~2,2! 0.309218 0.275~13!

~2,2!/~4,4! 1.44763 1.63~7!

~3,3!/~4,4! 1.44763 1.61~7!

@1,1,0,0# ~3,3!/~4,4! 1 1.10~5!

@1,0,1,0# ~2,2!/~4,4! 1 1.17~6!

@0,1,1,0# ~1,1!/~4,4! 1 1.05~5!

@1,0,0,1# ~1,1!/~4,4! 1 1
~2,2!/~1,1! 2 1.98~10!

~3,3!/~4,4! 2 2.22~10!

@0,0,1,1# ~1,1!/~3,3! 2 2.25~10!

~1,1!/~4,4! 2 2.25~10!

~2,2!/~4,4! 2 2.13~10!

TABLE VI. Tensor structure for low momentum values on th
fine lattice.

@ q̂x ,q̂y ,q̂z ,q̂t# Components
Ratio according

to Eq. ~5.1! This simulation

@1,0,0,0# ~2,2!/~3,3! 1 0.95~3!

~2,2!/~4,4! 1 1.20~4!

~3,3!/~4,4! 1 1.26~4!

@2,0,0,0# ~2,2!/~3,3! 1 1.00~4!

~2,2!/~4,4! 1 1.08~4!

~3,3!/~4,4! 1 1.07~4!

@1,0,0,1/2# ~1,1!/~2,2! 0.200687 0.170~6!

~1,1!/~3,3! 0.200687 0.187~6!

~2,2!/~4,4! 1.25107 1.47~5!

~3,3!/~4,4! 1.25107 1.34~4!
09450
o
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Figure 10 shows the data for both lattice spacings a
function of qa before shifting. In Fig. 11 we present th
result of the matching usingq̂ as the momentum variable
The minimum value forx2/Nd f of about 1.7 is obtained for
Ra;0.815. This value forRa is considerably higher than th
value of 0.71660.040 obtained from an analysis of the sta
quark potential in Ref.@23#. From this discrepancy, as we
as the relatively high value forx2/Nd f , we may conclude
that the gluon propagator, taken as a function ofq̂, does not
exhibit scaling behavior for the values ofb considered here

Figure 12 shows the result of the matching usingq as the
momentum variable. We can see immediately that this gi
much more satisfactory values both forx2/Nd f and forRa .
The minimum value forx2/Nd f of 0.6 is obtained forRa

50.745. Taking a confidence interval wherex2/Nd f,xmin
2

TABLE VII. Tensor structure for the large lattice, low values

q̂. Note that q̂ is given in units of 2p/Ls , so that e.g.q̂

5@2,0,0,0# corresponds toq̂5@1,0,0,0# for the small lattice.

@ q̂x ,q̂y ,q̂z ,q̂t# Components
Ratio according

to Eq. ~5.1! This simulation

@1,0,0,0# ~2,2!/~3,3! 1 0.97~5!

~2,2!/~4,4! 1 1.13~6!

~3,3!/~4,4! 1 1.17~6!

@0,1,0,0# ~1,1!/~4,4! 1 1.13~7!

~3,3!/~4,4! 1 1.17~8!

@0,0,1,0# ~1,1!/~4,4! 1 1.05~6!

~2,2!/~4,4! 1 1.08~6!

@2,0,0,0# ~2,2!/~3,3! 1 0.97~7!

~2,2!/~4,4! 1 1.10~7!

~3,3!/~4,4! 1 1.14~6!

@0,2,0,0# ~1,1!/~4,4! 1 1.09~6!

~3,3!/~4,4! 1 1.02~7!

@1,0,0,1/2# ~1,1!/~2,2! 0.200386 0.182~10!

~1,4!/~2,2! 20.400289 20.36(2)
~2,2!/~4,4! 1.2506 1.37~7!

~3,3!/~4,4! 1.2506 1.34~7!

@0,0,1,1/2# ~3,3!/~1,1! 0.200386 0.196~10!

~3,4!/~1,1! 20.400289 0.39~2!

~1,1!/~4,4! 1.2506 1.27~7!

~2,2!/~4,4! 1.2506 1.33~8!

TABLE VIII. Ratios of the diagonal components ofDmn(q
50) for all three lattices.

Components Small lattice Large lattice Fine lattice

~1,1!/~2,2! 0.93~6! 1.05~8! 0.98~4!

~1,1!/~3,3! 1.03~6! 0.94~8! 0.98~4!

~2,2!/~3,3! 1.10~7! 0.90~8! 1.00~5!

~1,1!/~4,4! 3.09~19! 1.42~11! 2.06~9!

~2,2!/~4,4! 3.31~20! 1.35~12! 2.10~10!

~3,3!/~4,4! 3.00~18! 1.51~11! 2.09~9!
7-10



the

ASYMPTOTIC SCALING AND INFRARED BEHAVIOR OF . . . PHYSICAL REVIEW D 60 094507
TABLE IX. Parameter values andx2 for fits to the asymptotic form~5.2!. Note that in this table,Z is
actuallyZ3(m,a)Z of Eq. ~5.2!. The fits are to data surviving the cylindrical and cone cuts, except for
large lattice, where only the cylindrical cut has been applied.

Lattice qmin ,qmax (a21) qmin ,qmax (GeV) No. of points x2/Nd f Z La L (GeV)

b56.0 1.47 2.78 2.72 5.14 27 1.48 2.140 0.399 0.752
163348 1.59 2.78 2.94 5.14 25 1.43 2.162 0.387 0.730

2.12 2.78 3.92 5.14 15 1.13 2.151 0.394 0.743

b56.0 1.53 2.83 2.83 5.23 69 1.42 2.159 0.387 0.729
323364 1.53 2.76 2.83 5.10 67 1.34 2.157 0.387 0.730

2.10 2.76 3.89 5.10 29 1.28 2.184 0.373 0.703
2.12 2.76 3.91 5.10 27 1.10 2.220 0.354 0.667
2.12 2.83 3.91 5.23 29 1.29 2.223 0.350 0.660

b56.2 1.09 2.83 2.83 7.36 53 1.33 2.286 0.275 0.726
243348 1.09 2.44 2.83 6.34 43 1.30 2.274 0.279 0.736

1.09 2.00 2.83 5.20 29 0.81 2.222 0.297 0.782
1.49 2.83 3.87 7.36 41 1.02 2.341 0.253 0.668
1.49 2.00 3.87 5.20 17 0.78 2.212 0.301 0.793
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11 gives us an estimate ofRa50.745237
132, where the errors

denote the uncertainty in the last digits. This is fully comp
ible with the value of 0.71660.040 obtained from Ref.@23#.
The corresponding estimate for the ratio of the renormal
tion constants isRZ51.038221

126. That RZ>1 is consistent
with what one would expect from continuum perturbati
theory.

C. Model functions

Having verified scaling in our lattice data over the ent
range ofq2 considered, we will now proceed with model fit
We have considered a number of functional forms, based
a variety of theoretical suggestions from the literature.
these forms, as well as the new models we have constru
in this study, include an overall dimensionless renormali

FIG. 10. The dimensionless, unrenormalized gluon propag
as a function of ln(qa) for the two values ofb. The triangles denote
the data for the small~coarse! lattice atb56.0, while the circles
denote the data forb56.2. The lines represent linear interpolatio
between the data points.
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tion parameterZ. This parameter is not equal to the reno
malization constantZ3, although the two can be related fo
each individual model.

We introduce an infrared-regulated versionL(q2,M ) of
the one-loop logarithmic correction given by Eq.~5.2! in
order to ensure that these models have the correct lea
ultraviolet behavior. This is given by

L~q2,M ![F1

2
ln@~q21M2!~q221M 22!#G2dD

. ~5.7!

The factor q221M 22 ensures thatL(q2,M ) is properly
regulated in the infrared.

For simplicity of presentation of the models, all mod
formulas are to be understood as functions of dimension

or
FIG. 11. x2 per degree of freedom as a function of the ratio

lattice spacings for matching the small and fine lattice data, usinq̂
as the momentum variable. The dashed line indicates the ratioRZ of
the renormalization constants.
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quantities~scaled by the appropriate powers of the latt
spacinga). The models considered here are
Gribov @1#:

DL~q2!5
Zq2

q41M4
L~q2,M !. ~5.8!

Stingl @2#:

DL~q2!5
Zq2

q412A2q21M4
L~q2,M !. ~5.9!

Marenzoniet al. @12#:

DL~q2!5
Z

~q2!11a1M2
. ~5.10!

Cornwall I @8#:

DL~q2!5ZF @q21M2~q2!# ln
q214M2~q2!

L2 G21

,

~5.11!

where

M ~q2!5M 5 ln
q214M2

L2

ln
4M2

L2
6

26/11

.

Cornwall II @24#:

DL~q2!5ZF [q21M2]ln
q214M2

L2 G21

. ~5.12!

Cornwall III @24#:

FIG. 12. x2 per degree of freedom as a function of the ratio
lattice spacings for matching the small and fine lattice data, usinq
as the momentum variable.
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DL~q2!5
Z

q21Aq2ln~q2/M2!1M2
. ~5.13!

Here,Z, M, A, L anda are parameters to be optimized in th
fit. In addition, we study the following 4-parameter forms
Model A:

DL~q2!5ZF AM2a

~q21M2!11a
1

1

q21M2
L~q2,M !G .

~5.14!

Model B:

DL~q2!5ZF AM2a

~q2!11a1~M2!11a
1

1

q21M2
L~q2,M !G .

~5.15!

Model C:

DL~q2!5ZF A

M2
e2(q2/M2)a

1
1

q21M2
L~q2,M !G .

~5.16!

We have also considered special cases of the three fo
~5.14!–~5.16!, with specific values for the exponenta. All
these models are constructed to exhibit the asymptotic
havior of Eq.~5.2!.

D. Numerical results

The fits are performed to the large lattice data using
cylindrical cut, and excluding the first point~at qa;0.1),
which may be sensitive to the volume of the lattice. To b
ance the sensitivity of the fit over the available range ofqa,
we have averaged adjacent lattice momenta lying wit
Dqa,0.005.

In order to determine the stability of the fits, we ha
varied the starting point and width of the fit. After averagin
over adjacent momenta, the data points are numbe
1,2, . . .,142. The starting point has been incremented
steps of 2, and for each starting point the width has b
varied in steps of 2 between the minimum possible wid
~i.e., the number of parameters plus 1! and the maximum
width. The statistical uncertainty in the parameters is de
mined using a jackknife procedure@25#. Since the number of
points in most of the fits is larger than the number of co
figurations, we have not been able to computex2 using the
full covariance matrix@26#. However, in the cases where th
is possible, the results are compatible with those achie
using the ‘‘naive’’ x2.

Table X shows the values forx2/Nd f for each of the mod-
els ~5.8!–~5.13!. Unfortunately, none of these models su
ceed in providing an acceptable fit over the entire availa
momentum range. In the case of the model of Marenz
et al., Eq. ~5.10!, this is not surprising, since this model do
not have the correct asymptotic behavior. Our models, mo
A and model B, are constructed as generalizations of
~5.10! which should remedy this problem. Of the models p

f
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TABLE X. x2 per degree of freedom for fits to the models~5.8!–~5.13!. xall
2 is thex2 for the maximum

available fitting range.xmin
2 corresponds to the minimum value obtained forx2/Nd f , ‘‘Range’’ is the corre-

sponding fitting range, andNfit is the number of points included in that range.x IR
2 refers to the widest fitting

range starting in the deep infrared~point 2 or 4! wherex2/Nd f&1.

Model xall
2 /Nd f xmin

2 /Nd f Range (qa) Nfit x IR
2 /Nd f Range (qa) Nfit

Gribov 827 0.31 0.28–0.39 5
Stingl 838 0.44 0.28–0.45 8 1.03 0.28–0.49 10
Marenzoniet al. 163 0.79 1.11–1.47 24 1.20 0.20–0.59 18
Cornwall I 50 0.67 0.99–1.47 30 1.01 0.20–0.62 20
Cornwall II 89 0.49 1.26–1.47 14 0.69 0.28–0.45 8
Cornwall III 38 0.64 1.13–1.33 23 1.05 0.20–0.48 11
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forward in the literature, we note that Cornwall’s propos
~5.11! lies closest to the data.

Figure 13 showsx2/Nd f as functions of the starting poin
and width~in number of points! of the fits, for fits to models
A–C. Of these three, only model A is able to account pro
erly for the infrared behavior of the gluon propagator, wh
models B and C yield values forx2/Nd f of 14 and 12 respec
tively. All the models give reasonable fits to the data
intermediate momentum ranges.

Fit parameters for model A are illustrated in Fig. 14. A
the parameters, in particularM and a, are well determined
and stable over the most interesting regions~fits with a large
number of points, including the infrared!. In the ultraviolet
region alone, all the parameter values become unstable.
is expected, since we found in Sec. V B that a 2-param
form is sufficient to describe the data in this region. The
the 4-parameter forms, models A–C, will be poorly co
strained.
09450
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Figures 15 and 16 show the best fit of model A. We s
that this provides a near perfect fit to the data. The optima
parameters are shown in Table XI. Figure 17 shows fits
several other models, which we can see fail to account pr
erly for the data.

Table XI also shows the parameter values for the mo
of Marenzoniet al., Eq.~5.10!, and Cornwall’s model~5.11!.
The values quoted are for fits to all the available data, wh
the errors denote the spread in parameter values resu
from varying the fitting range. The statistical errors are in
cases much smaller than the systematic errors assoc
with varying the fit regime. In the case of model C, th
variation in parameter values becomes unstable in the u
fitting ranges; in order to avoid this problem, we have chos
a more restricted set of fitting ranges to evaluate the un
tainties than for the other models.

In order to determine the dependence of our models
the exact functional form used to regulate the ultraviolet te
-

d
r
t
e

t

FIG. 13. x2 per degree of free-
dom for fits of model A~top left!,
model B ~top right! and model C
~bottom!. The ‘‘Fit start’’ axis in-
dicates the starting point for the
fit, while the ‘‘Fit width’’ axis in-
dicates the number of points in
cluded in the fit. The most inclu-
sive fits are in the near right-han
corner, with the smallest value fo
the starting point and the larges
number of points included. We se
that model A is stable over a wide
variety of fitting ranges, while the
other two models fail to accoun
properly for the data in the infra-
red.
7-13
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FIG. 14. Stability plots for
model A. All the parameter values
are stable over the region of inter
est.
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in the infrared, we have performed fits to Eqs.~5.14! and
~5.15! ~models A and B! with L(q2,M )→L(q2,A2M ) and
with L(q2,M )→L(q2,M /A2), altering the relation betwee
masses in the infrared and ultraviolet terms. This turns ou
have a significant effect both onx2/Nd f and on the values fo
the fit parameters. The quality of the fit deteriorates subs
tially as M→A2M in the logarithm, while it improves
slightly as M→M /A2. The value for the exponenta
changes by more than 2s, and this feeds through to the oth
parameters, although the value forM remains approximately
within 1s of its original value. The relative perfor

FIG. 15. The gluon propagator multiplied byq2, with nearby
points averaged. The line illustrates our best fit of model A defin
in Eq. ~5.14!. The fit is performed over all points shown, excludin
the one at the lowest momentum value, which may be sensitiv
the finite volume of the lattice. The scale is taken from the value
the string tension quoted in Ref.@23#.
09450
to
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mance of model A and model B is not affected, and mode
remains clearly the preferred model of these two.

VI. DISCUSSION AND CONCLUSIONS

A. Comparison of different models

We find that none of the models from the literature give
satisfactory fit to the data. It can be argued that Stingl’s fo
~5.9! is only supposed to be valid in the deep infrared. We
not have sufficient data in this region, or control over t
volume dependence of the data at our lowest momen
values, to be able to distinguish between the performanc
the various models in this region alone~i.e., the first 10
points in our fits!. All models give a reasonablex2/Nd f when
we fit to only the first 10–20 points. A generalization
Stingl’s form has been used to fit to lattice data at hi

d

to
r FIG. 16. The gluon propagator in physical units. The line illu
trates our best fit of model A, as in Fig. 15.
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momentum values@27#, but these results are not direct
comparable to ours, since they are obtained for a differ
choice of gauge and do not include the infrared reg
(q̂min51 GeV). In the case of Cornwall’s proposal~5.11! it
should also be mentioned that this form was derived usin
gauge-invariant ‘‘pinch technique,’’ and may not be direc
comparable to our Landau gauge results.

We have found that the data can be adequately descr
by two terms: one governing the ultraviolet behavior acco
ing to the one-loop perturbative formula and the other p
viding the infrared behavior. The infrared term is propo
tional to (q21M2)2a with a'3. It should be emphasized a
this point that the performance of model A, and in particu
the value of the exponenta, depends substantially on th
exact form chosen for the logarithmic functionL(q2,M ) in
order to regulate the ultraviolet term in the infrared. Given
particular form forDUV , all the parameter values are ve

FIG. 17. The gluon propagator multiplied byq2, with nearby
points averaged. The lines illustrate the best fit of various ot
models. The solid line is model B, the dotted line is Cornwall I, t
dash-dotted line is Marenzoniet al.and the dashed line is model C

TABLE XI. Parameter values in lattice units for fits of mode
~5.10!–~5.16!. The values quoted are for fits to the entire set of da
The errors denote the uncertainty in the last digit~s! of the param-
eter values which results from varying the fitting range. The fitt
ranges considered when evaluating the uncertainties are those
a minimum of 40 points included and with the minimum value f
qa no larger than 0.99~point number 40!, corresponding toqmin

<1.86 GeV. For model C, the fitting ranges have been restricte
minimum values forqa no larger than 0.62~point number 20!, in
order to obtain meaningful uncertainties. Model A2 denotes model
A with a fixed to 2. Recall that the inverse lattice spacing for th
lattice is 1.885 GeV.

Model x2/Nd f Z A M a or L

Marenzoniet al. 163 2.41212
10 0.14214

14 0.2922
16

Cornwall I 50.3 6.529
17 0.24216

13 0.2727
17

Model C 13.9 2.5520
1147 1.07297

18 0.23222
11 0.53229

14

Model A 1.40 2.0125
14 9.84286

110 0.5425
15 2.17219

111

Model A2 2.16 2.0321
12 8.8520

144 0.5122
11

Model B 12.1 2.09221
10 2.29239

117 0.3821
123 1.0927

146
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stable and lend credence to model A as correctly encaps
ing the lattice results. It should be noted, however, that
though the 1-loop perturbative form does provide an
equate fit in the ultraviolet, we found in Sec. V B 1 that t
parameter values are not stable. The 2-loop form should
an improvement on this. The third model we consider
using an exponential function rather than a ‘‘mass’’ term
describe the infrared behavior, was clearly unsatisfactory

Our approach here differs significantly from those of p
vious studies@11,12#. Firstly, in order to reduce the effect o
lattice artifacts at high momenta, we use the momentum v
ableq defined in Eq.~2.11! rather than the ‘‘naive’’ momen-
tum variableq̂. We believe this approach has been justifi
by the verification of scaling in Sec. V B. A similar approac
has been used in a recent study of the three-gluon ve
@28#. Furthermore, we select an improved and larger se
momenta to the ones used in those previous studies. W
this in mind, it should nevertheless be possible to make
least an approximate comparison between the results at s
to intermediate momenta.

Both previous studies@11,12# fit their data to the form of
Marenzoniet al., Eq. ~5.10!, or special cases of this mode
~with M50 or a50), which we have found does not ac
count satisfactorily for the data. In addition, in Ref.@11# the
low-momentum data are fitted to the Gribov form~5.8!. The
latter form fails to provide us with any fit which would mak
a comparison of parameter values meaningful. However,
may compare the values we obtain for the parametera in the
form of Marenzoniet al., Eq. ~5.10! with those of Refs.
@11,12#. Although x2/Nd f for fits to all the data with this
model is very high, the value fora is reasonably stable ove
a large region, including fits wherex2/Nd f;1. We find a
;0.3, in agreement with the value quoted in Ref.@11#. This
is inconsistent with the value of;0.5 quoted in Ref.@12#.
However, this value is obtained by fitting only to data in t
infrared region. If we restrict ourselves to the same regi
we also obtain a value ofa;0.5. Hence, when repeating th
analysis of Refs.@11,12#, we find results consistent with
theirs.

We find that model A provides a fit to the data througho
the entire available momentum range. However, we are
aware of any current physical interpretation of this model,
contrast to the models arising from the approximate anal
cal studies by Gribov, Stingl and Cornwall@1,2,8#.

B. Finite volume effects

The asymmetry of the lattices, withLt53Ls for the small
lattice andLt52Ls for the large and fine lattices, is one o
the measures used to assess finite volume effects. By c
paring momenta along the time axis with momenta along
spatial axes, we find that finite volume errors are small
the large lattice, even at low momentum values. A ‘‘con
cut along the diagonal in momentum space is imposed
the smaller lattices to remove finite volume effects, but t
cut is not found to be necessary for the large lattice.

Inspection of the tensor structure reveals some resid
finite volume effects in the order of 10–15 % at the lowe
momentum values. Apart from these 4–6 points, finite v

r
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ume effects are negligible. Excluding these points does
change the parameter values. Nor will the relative perf
mance of our models be affected. Implementing the ‘‘con
cut on the large lattice will have a similar effect to excludi
these points.

Comparing the data at low momenta for the two lattices
b56.0, we find that the value of the gluon propagator d
creases with increasing volume. This opens up the possib
that in the infinite-volume limit, the propagator may b
strongly suppressed or even vanishing at extremely sm
momenta, as suggested by Gribov and Stingl@1,2#. Recent
studies at strong coupling and in lower dimensions@29–31#
lend some support to this possibility.

C. Finite lattice spacing effects

The kinematic correctionq̂→q gives a large reduction in
finite lattice spacing anisotropy at high momentum valu
but does not remove this anisotropy completely. A ‘‘cyli
der’’ cut along the diagonal in momentum space is impo
on all lattices to remove this residual anisotropy.

We have verified scaling of the gluon propagator for m
mentaq.1.3 GeV betweenb56.0 andb56.2. This scaling
is dependent on the kinematic correctionq̂→q. If q̂ is used
as the momentum variable, scaling fails, even after the ‘‘c
inder’’ and ‘‘cone’’ cuts are imposed. We are current
working on using improved actions@32,33# to reduce or re-
move finite lattice spacing effects.

D. Conclusion

We have calculated the gluon propagator on a large
ume lattice and verified that finite volume effects are un
control. Finite volume effects in the order of 10% are fou
for the very lowest momentum values, but become insign
cant for q.600 MeV. Finite lattice spacing effects ar
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handled by using the kinematic correctionq̂m→qm

5(2/a)sin(q̂ma/2), and by selecting momenta along th
4-dimensional diagonal. Scaling is verified betweenb56.0
and 6.2.

The propagator is found to be well represented by
functional formD(q2)5D IR1DUV , whereD IR5AM2a(q2

1M2)2(11a) andDUV is an infrared regulated version@see
Eqs. ~5.7! and ~5.14!# of the one-loop asymptotic form de
fined in Eq.~5.2!. Our best estimate for the parametera is
a52.220.2

10.1
20.3
10.2, where the second set of errors represents

systematic uncertainty arising from the choice of infrar
regulator forDUV . Using the regulator given in Eq.~5.7!,
our best estimates for the parametersM and A are M
5(10206100625) MeV andA59.820.9

10.1, where the second
set of errors inM represents the statistical uncertainty in t
lattice spacing quoted in Table I.

Among the issues still under consideration is an extra
lation of D(q2) to infinite volume at lowq2, as well as an
evaluation of the effect of Gribov copies and of the gau
dependence of the gluon propagator. Work is also
progress to calculate the gluon propagator using impro
actions, thereby reducing finite lattice spacing effects a
allowing simulations on larger physical volumes.
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