1,012 research outputs found

    Discharge transient coupling in large space power systems

    Get PDF
    Experiments have shown that plasma environments can induce discharges in solar arrays. These plasmas simulate the environments found in low earth orbits where current plans call for operation of very large power systems. The discharges could be large enough to couple into the power system and possibly disrupt operations. Here, the general concepts of the discharge mechanism and the techniques of coupling are discussed. Data from both ground and flight experiments are reviewed to obtain an expected basis for the interactions. These concepts were applied to the Space Station solar array and distribution system as an example of the large space power system. The effect of discharges was found to be a function of the discharge site. For most sites in the array discharges would not seriously impact performance. One location at the negative end of the array was identified as a position where discharges could couple to charge stored in system capacitors. This latter case could impact performance

    Sustainable deathstyles? The geography of green burials in Britain

    Get PDF
    In the context of a wider literature on ‘deathscapes’, we map the emergence of a new mode of burial and remembrance in Britain. Since a ‘green’ burial ground was established in Carlisle in 1993, sites for so-called ‘green, ‘natural’ or ‘woodland’ funerals have proliferated. There are now over 270 such sites in Britain. Drawing on a postal and email survey sent to all managers/owners and visits to 15 green burial grounds (enabling observations and semi-structured interviews with their managers), we chart their growth, establishment and regulation and describe the landscapes associated with them. This requires, and leads to, wider reflections on nature, capital, consumption, culture and the body

    Current collection from the space plasma through defects in high voltage solar array insulation

    Get PDF
    For spacecraft operation in the near Earth environment, solar cell arrays constitute the major source of reliable long term power. Optimization of mass and power efficiency results in a general requirement for high voltage solar arrays. The space plasma environment, though, can result in large currents being collected by exposed solar cells. The solution of a protective covering of transparent insulation is not a complete solution, inasmuch as defects in the insulation result in anomalously large currents being collected through the defects. Tests simulating the electron collection from small defects in an insulation have shown that there are two major collection modes. The first mode involves current enhancement by means of a surface phenomenon involving the surrounding insulator. In the second mode the current collection is enhanced by vaporization and ionization of the insulators materials, in addition to the surface enhancement of the first mode. A model for the electron collection is the surface enhanced collection mode was developed. The model relates the secondary electron emission yield to the electron collection. It correctly predicts the qualitative effects of hole size, sample temperature and roughening of sample surface. The theory was also shown to predict electron collection within a factor of two for the polymers teflon and polyimide

    Battleship Commander: The Life of Vice Admiral Willis A. Lee Jr.

    Get PDF

    Partitioning 3-homogeneous latin bitrades

    Full text link
    A latin bitrade (T,T)(T^{\diamond}, T^{\otimes}) is a pair of partial latin squares which defines the difference between two arbitrary latin squares LTL^{\diamond} \supseteq T^{\diamond} and LTL^{\diamond} \supseteq T^{\otimes} of the same order. A 3-homogeneous bitrade (T,T)(T^{\diamond}, T^{\otimes}) has three entries in each row, three entries in each column, and each symbol appears three times in TT^{\diamond}. Cavenagh (2006) showed that any 3-homogeneous bitrade may be partitioned into three transversals. In this paper we provide an independent proof of Cavenagh's result using geometric methods. In doing so we provide a framework for studying bitrades as tessellations of spherical, euclidean or hyperbolic space.Comment: 13 pages, 11 figures, fixed the figures. Geometriae Dedicata, Accepted: 13 February 2008, Published online: 5 March 200

    SPIN TRAPPING THE OXIDIZED PRODUCTS OF PUFA IN MODEL MEMBRANES: THE PROTECTION CONFERRED BY VITAMIN E

    Get PDF
    poster abstractElectron paramagnetic resonance (EPR) spectroscopy is recognized as the most sensitive and noninvasive means to quantify free radicals of biological relevance such as reactive oxygen species (ROS). In spin trapping a molecule (the spin trap) reacts with the free radical producing a spin adduct that is sufficiently stable to be detected by EPR. Here we apply a novel spin trapping technique to investigate the protection that α-tocopherol (vitamin E), the major lipid soluble antioxidant in membranes, confers on polyunsaturated lipids in model membranes. Polyunsaturated fatty acids (PUFA) readily oxidize because they have a cis,cis-1,4-pentadiene motif that renders the central methylene group vulnerable to attack by ROS. Our method quantifies the oxidized products of PUFA in lipid vesicles that have been exposed to a peroxyl radical generator 2,2'-azobis-(amidinopropane) dihydrochloride (AAPH) that initiates the free radical chain reaction. By measuring the reduction in lipid peroxidation due to the presence of αtocopherol, we test the hypothesis that the vitamin co-localizes with polyunsaturated lipids in membrane domains to ensure close proximity to the most vulnerable lipid species
    corecore