845 research outputs found
Nematode biomass spectra as descriptors of functional changes due to human and natural impact
Nematode biomass spectra (NBS) for different nematode communities—subject to different forms of stress and enrichment—from the Belgian continental shelf have been constructed and analysed. These analyses showed that non-normalised NBS yield better results for comparisons of nematode assemblages than normalised NBS (in which the biomass in a weight class is divided by its corresponding weight interval) since the ecologically relevant information is retained. Normalising the spectra caused elevated biomass values and peaks to disappear, introducing bias when interpreting the distribution of biomass over spectra. Cumulative nematode biomass spectra proved to be useful in evaluating statistical differences, using the slope of the regression line of the cumulative biomass to the nominal value of a log2-based size class. Interpreting Pareto-type graphs and regressions was not straightforward. We suggest a combined use of both NBS and the regression approach for the analysis of NBS. NBS and cumulative NBS constructed for nematode communities from undisturbed sediments proved to be conservative: no differences in size distribution were found for communities from different locations. Physical disturbance, introduced by sand extraction, did not affect the regression slopes of cumulative NBS. However, a shift in peak biomass values towards lower size classes was observed in the regular NBS. This was attributed to an alteration of the nematode communities due to the frequent physical disturbance of the sediments. At an oxygen-stressed site, we observed a single class biomass peak, due to the presence of a single nematode species well adapted to the impoverished sediment quality. Phytoplankton sedimentation during a spring bloom corresponded to shifts in peaks in NBS due to a change in age structure of the nematode communities. Biomass values probably increased as a result of a higher food supply to the benthos
Adaptive constraints for feature tracking
In this paper extensions to an existing tracking algorithm are described.
These extensions implement adaptive tracking constraints in the form
of regional upper-bound displacements and an adaptive track smoothness
constraint. Together, these constraints make the tracking algorithm
more flexible than the original algorithm (which used fixed tracking
parameters) and provide greater confidence in the tracking results.
The result of applying the new algorithm to high-resolution ECMWF
reanalysis data is shown as an example of its effectiveness
Bodyspace at the pub: sexual orientations and organizational space
In this article we argue that sexuality is not only an undercurrent of service environments, but is integral to the way that these workspaces are experienced and negotiated. Through drawing on Sara Ahmed’s (2006a) ‘orientation’ thesis, we develop a concept of ‘bodyspace’ to suggest that individuals understand, shape and make meaning of work spaces through complex sexually-orientated negotiations. Presenting analysis from a study of UK pubs, we explore bodyspace in the lived experience of workplace sexuality through three elements of orientation: background; bodily dwelling; and lines of directionality. Our findings show how organizational spaces afford or mitigate possibilities for particular bodies, which simultaneously shape expectations and experiences of sexuality at work. Bodyspace therefore provides one way of exposing the connection between sexual ‘orientation’ and the lived experience of service sector work
Structure of a bacterial type IV secretion core complex at subnanometre resolution
Type IV secretion (T4S) systems are able to transport DNAs and/or proteins through the membranes of bacteria. They form large multiprotein complexes consisting of 12 proteins termed VirB1-11 and VirD4. VirB7, 9 and 10 assemble into a 1.07 MegaDalton membrane-spanning core complex (CC), around which all other components assemble. This complex is made of two parts, the O-layer inserted in the outer membrane and the I-layer inserted in the inner membrane. While the structure of the O-layer has been solved by X-ray crystallography, there is no detailed structural information on the I-layer. Using high-resolution cryo-electron microscopy and molecular modelling combined with biochemical approaches, we determined the I-layer structure and located its various components in the electron density. Our results provide new structural insights on the CC, from which the essential features of T4S system mechanisms can be derived
- …