13,698 research outputs found

    A self-managing infrastructure for ad-hoc situation determination

    Get PDF
    Automatically determining the situation of an ad-hoc group of people and devices within a smart environment is a significant challenge in pervasive computing systems. Current approaches often rely on an environment expert to correlate the situations that occur with the available sensor data, while other machine learning based approaches require long training periods before the system can be used. This paper presents a novel approach to situation determination that attempts to overcome these issues by providing a reusable library of general situation specifications that can be easily extended to create new specific situations, and immediately deployed without the need of an environment expert. The architecture of an accompanying situation determination infrastructure is provided, which autonomously optimises and repairs itself in reaction to changes or failures in the environment

    A digital simulation of message traffic for natural disaster warning communications satellite

    Get PDF
    Various types of weather communications are required to alert industries and the general public about the impending occurrence of tornados, hurricanes, snowstorms, floods, etc. A natural disaster warning satellite system has been proposed for meeting the communications requirements of the National Oceanic and Atmospheric Administration. Message traffic for a communications satellite was simulated with a digital computer in order to determine the number of communications channels to meet system requirements. Poisson inputs are used for arrivals and an exponential distribution is used for service

    Crucial Dependence of ``Precarious'' and ``Autonomous'' phi^4s Upon the Normal-ordering Mass

    Get PDF
    Using the Gaussian wave-functional approach with the normal-ordering renormalization prescription, we show that for the (3+1)-dimensional massive lambda phi^4 theory, ``precarious'' and ``autonomous'' phi^4s can exist if and only if the normal-ordering mass is equal to the classical masses at the symmetrc and asymmetric vacua, respectively.Comment: 6 pages, no figures, Revtex file, accepted for publication in Mod. Phys. Lett.

    Influence of convective transport on tropospheric ozone and its precursors in a chemistry-climate model

    Get PDF
    The impact of convection on tropospheric O<sub>3</sub> and its precursors has been examined in a coupled chemistry-climate model. There are two ways that convection affects O<sub>3</sub>. First, convection affects O<sub>3</sub> by vertical mixing of O<sub>3</sub> itself. Convection lifts lower tropospheric air to regions where the O<sub>3</sub> lifetime is longer, whilst mass-balance subsidence mixes O<sub>3</sub>-rich upper tropospheric (UT) air downwards to regions where the O<sub>3</sub> lifetime is shorter. This tends to decrease UT O<sub>3</sub> and the overall tropospheric column of O<sub>3</sub>. Secondly, convection affects O<sub>3</sub> by vertical mixing of O<sub>3</sub> precursors. This affects O<sub>3</sub> chemical production and destruction. Convection transports isoprene and its degradation products to the UT where they interact with lightning NO<sub>x</sub> to produce PAN, at the expense of NO<sub>x</sub>. In our model, we find that convection reduces UT NO<sub>x</sub> through this mechanism; convective down-mixing also flattens our imposed profile of lightning emissions, further reducing UT NO<sub>x</sub>. Over tropical land, which has large lightning NO<sub>x</sub> emissions in the UT, we find convective lofting of NO<sub>x</sub> from surface sources appears relatively unimportant. Despite UT NO<sub>x</sub> decreases, UT O<sub>3</sub> production increases as a result of UT HO<sub>x</sub> increases driven by isoprene oxidation chemistry. However, UT O<sub>3</sub> tends to decrease, as the effect of convective overturning of O<sub>3</sub> itself dominates over changes in O<sub>3</sub> chemistry. Convective transport also reduces UT O<sub>3</sub> in the mid-latitudes resulting in a 13% decrease in the global tropospheric O<sub>3</sub> burden. These results contrast with an earlier study that uses a model of similar chemical complexity. Differences in convection schemes as well as chemistry schemes &ndash; in particular isoprene-driven changes are the most likely causes of such discrepancies. Further modelling studies are needed to constrain this uncertainty range

    Chemical chronology of the Southern Coalsack

    Full text link
    We demonstrate how the observed H2O ice column densities toward three dense globules in the Southern Coalsack could be used to constrain the ages of these sources. We derive ages of ~10^5 yr, in agreement with dynamical studies of these objects. We have modelled the chemical evolution of the globules, and show how the molecular abundances are controlled by both the gas density and the initial chemical conditions as the globules formed. Based on our derived ages, we predict the column densities of several species of interest. These predictions should be straightforward to test by performing molecular line observationsComment: 10 pages, 4 figures, in press at MNRA

    Fabrication of free-standing ordered fluorescent polymer nanofibres by electrospinning

    Get PDF
    The authors are grateful to the Engineering and Physical Sciences Research Council for financial support.We demonstrate a static fabrication approach to make free-standing ordered arrays of fluorescent nanofibres through control of the transverse electrospinning field. The alignment and the density of the nanofibre arrays are optimised by careful design of both the source and collector electrode geometries which can control the transverse electric field over the full path of the jet. In doing so, we fabricate suspended fluorescent nanofibres with an aspect ratio of 10(4), and with a substantially increased density and order parameter (by a factor of similar to 10 compared to random deposition). Electrostatic modelling suggests that the field distribution of the component is the main contribution to the ordering between the plates. This method offers increased efficiency for the creation of ordered fibres collected over a small area and the characterisation of their photoluminescent properties.Publisher PDFPeer reviewe

    QCD Corrections to t anti-b H^- Associated Production in e^+ e^- Annihilation

    Full text link
    We calculate the QCD corrections to the cross section of e^+ e^- -> t anti-b H^- and its charge-conjugate counterpart within the minimal supersymmetric extension of the Standard Model. This process is particularly important if m_t b H^+ and e^+ e^- -> H^+ H^- are not allowed kinematically. Large logarithmic corrections that arise in the on-mass-shell scheme of quark mass renormalization, especially from the t anti-b H^- Yukawa coupling for large values of tan(beta), are resummed by adopting the modified minimal-subtraction scheme, so that the convergence behavior of the perturbative expansion is improved. The inclusion of the QCD corrections leads to a significant reduction of the theoretical uncertainties due to scheme and scale dependences.Comment: 21 pages (Latex), 8 figures (Postscript); detailed discussion of scheme and scale dependences adde
    • …
    corecore