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A DIGITAL SIMULATION OF MESSAGE TRAFFIC FOR NATURAL

DISASTER WARNING COMMUNICATIONS SATELLITE

by G. F. Hein and S. M. Stevenson

Lewis Research Center

ABSTRACT

Various types of weather communications are required to alert
industries and the general public about the impending occurrence of tor-
nados, hurricanes, snowstorms, floods, etc. A natural disaster warn-
ing satellite system has been proposed for meeting the communications
requirements of the National Oceanic and Atmospheric Administration.
Message traffic for a communications satellite was simulated with a
digital computer in order to determine the number of communications
channels to meet system requirements. IPoisson inputs are used for
arrivals and an exponential distribution is used for service.

INTRODUCTION

The National Oceanic and Atmospheric Administration and the
National Aeronautics and Space Administration have been jointly investi-
gating various technologies in order to develop conceptual communica-
tions systems which meet requirements for a natural disaster warning
system. The function of such a system would be to:

(1) Route disaster warnings to the general public.
(2) Provide disaster communications among national, regional and

local weather service offices and affected areas.
(3) Provide environmental information to the general public.
(4) Provide a system for collecting decision information for warning

to the public.



The natural disasters which would be monitored by the disaster warn-
ing system include tornados, severe thunderstorms, flash floods, tsunami,
earthquakes, hurricanes, forest fires, winter storms, air pollution, etc-

The National Weather Service is organized to monitor and predict the
5

weather locally, regionally and nationally. There are also national centers
for particular types of weather, for example, the National Hurricane
Center in Miami, Florida. The total number of offices and centers around
the country is approximately 300.

The joint investigations by NOAA and NASA include terrestrial and
satellite communication systems. This report is confined to a satellite
system only. The problem is to determine the number of communications
channels required for a satellite system . The information required for
such a decision is difficult to generate since historical records show only
the number and size of communications from various parts of the country.
The exact time of transmissions cannot.be determined and so it is impos-
sible to determine instantaneous flows ot message traffic thus precluding
a deterministic analysis of any network. Because of the local and regional
nature of many communications, no individual has an intuitive understanding
of the total problem.

As will be demonstrated, the problem may be formulated as a multi-
server queueing system. Simulation is frequently used to>analyze unique
queueing-type problems which defy direct analytical solution. This tech-
nique often provides more information than an analytical model because it
is possible to formulate stochastic.simulation models which reveal the sys-
tem states during occurrences of events with small probabilities of happen-
ing, but which the system must be capable of handling. Such is the case of
the natural disaster warning system. If messages are required to wait in
a queue, a tornado may occur before the warning can be disseminated to the
public. It is imperative that such a .system would have minimum waiting
times in a queue.

The simulation model discussed in this report was formulated to handle
the local, regional and national disaster warning communications of NOAA.
If a Disaster Warning System were developed, it would be designed as an



interface with the many offices and centers throughout the country. The
system would be used only to provide warnings to the public in the most
expedient manner and to collect information from data collection platforms
which would be located throughout the nation. The system would operate as
an adjunct to the weather service rather than as a replacement for any
present operation.

The data collection platforms would be designed to monitor the environ-
ment, for example, river and stream levels. This information would be
relayed to a central area for data collection and then processed by the weather
service. The channel allocation for such a system may be determined ana-
lytically and so will not be treated here. Communication channels required
for data collection platforms and teletypes may also be added to those
determined necessary for voice communication messages.

The classical queueing theory equations are discussed in this report in
order to provide a framework for the development of a model; the equations
are used to determine the expected values of certain parameters.

CLASSICAL QUEUEING EQUATIONS (REF. 1)

One of the most commonly encountered phenomena in the physical
world is the waiting line process. The process occurs whenever a demand
exceeds the capacity to provide service. In order to solve the waiting line
problem, it is necessary to perform a trade-off between the "costs" of
providing the service and the "costs" of not providing the service. Normally
the goal is to achieve an economic balance between the two "costs" involved.
Queueing theory and simulation models do not solve the problem directly,
but the two approaches do provide the information required for decision
making by predicting various characteristics of the queueing process.

In the usual formulations of the process, units are generated over time
by an "input source". These units enter the system and join a "queue". At
certain points in time, a member of the queue is selected for service by some
rule called a "service discipline". The required service is then performed
for the unit by the "service mechanism", and then the unit leaves the queueing



system. The process is depicted in sketch (a).
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The size of the input source may be either finite or infinite. Since
the calculations are easier for the_infinite case, this assumption is often
made even though the actual size is some relatively large finite number.
The statistical pattern by which calling units are generated over time must
also be specified. Usually it is assumed that this distribution is Poisson.
An equivalent assumption is that the interarrival times form an exponential
distribution since the cumulative distribution of the Poisson is of the expo-

Xt ;

nential form 1-e" .
The service discipline refers to the order in which members of the

queue are selected for service. In this study it was assumed that the ser-
vice discipline is first-come-first-served.

The service mechanism consists of one or more facilities, each of
which contains one or more parallel service channels or servers. The
time elapsed from the beginning of service to completion is referred to as
the service time or holding time. The probability distribution of service
must also be specified for a queueing model. Special cases of the gamma
distribution, the exponential distribution and constant service times are
frequently selected for the service mechanism.



Although many types of waiting line situations have been studied, queue-
ing theory has been primarily concerned with one particular situation,
namely, a single waiting line with one or more servers as seen in sketch (b).
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The following is a listing of the standard notation and terminology
used in queueing theory:

Line Length = number of calling units in the queueing system

Queue Length = number of calling units waiting for service

= line length minus number of units being served

E_ = state in which there are n calling units in the queueing
system

= probability that exactly n calling units are in the queue-
ing system

= number of servers or parallel service channels in the
queueing system

n

n



\! = mean arrival rate (expected number of arrivals per unit
time) of new calling units when n units are in the sys-
tem

Mn = mean service rate (expected number of units completing
service per unit time) when n units are in the system

L = expected line length

L = expected queue length

W =•'. expected waiting time in the system (includes service time)

W = expected waiting time in the queue (excludes service time)
Si • . .

A negligible function of At or zero order effect will be denoted o(At).
Since interest usually lies in a steady-state processes, rather than

initial or startup conditions, queueing theory deals primarily with processes
which are assumed to have reached a steady state, m this case, when A
is a constant, A, then

L = AW

and

If the mean service time is assumed to be a constant, 1/ju then

W = W -

The term "birth" refers to the arrival of a new calling unit into the
queueing system and "death" refers to the departure of a served unit. Three
postulates form the basis of the birth-death process.

I. Birth Postulate: Given that the system is in state E at time t,
the probability that exactly one birth will occur in the interval from t to
(t + At) is

AnAt + o(At)

where A is a positive constant.



II. Death Postulate: Given that the system is in state E at time
t, the probability that exactly one death will occur during the interval
from t to (t + At) is

junAt + o(At)

HI. Multiple Jump Postulate: Given that the system is in state E
at time t, the probability that the number of births and deaths combined
will exceed one during the interval from t to (t + At) is o(At).

From the postulates it can be stated that one of four mutually exclu-
sive events must occur during the interval from t to (t + At):

1. Exactly one birth and no deaths.
2. Exactly one death and no births.
3. Number of births and deaths combined > one.
4. No births or deaths.

The sum of the four probabilities must equal one. The probability of
event 4 equals 1- sum of probabilities for events 1 to 3, which during the
interval from t to (t + At) is equal to

1 - XnAt - jLtnAt + o(At)

since the sum or difference of o(At) terms can be written as o(At). The
probabilities of being in state E at time t + At are developed from the
possible states at time t and the events required to go from that state to
the state E as follows:n

State at t Events from t to (t + At) Probability of Occurrence

En_1 one birth P^ (A^At + o(At))

En+1 one death Pn+1 (Mn+1At + o(At))

? multiple events o(At)

En none Pn (1 - ARAt - n^t + o(At)



It is shown in reference 1 (p. 293) that

dP
- = Xn-l Pn-l + <Vl Pn+l ' <Xn + «n> Pn for n

dt

When n = o X 1=0 and u = o, so that

— = M p - X P
dt l 1 ° °

This provides a set of differential equations which, if they could be
solved, would provide the values for P . Unfortunately, a convenient
general solution is not available and so the equations are used to obtain
solutions for certain special cases.

The Pure Birth Process

Assume that \n = X and |u = o for all n > o. In this situation no
deaths occur and the mean arrival rate is constant. The differential
equations for this process are: 0

2̂= -XP
dt

^
— _ = XP 1 - XP for n = 1, 2, ...
dt n-1 n

If the system is in state E at time t = o, then the solution for the n = o
case is



The general solution is

p .
n n!

This is the Poisson distribution with parameter Xt. The mean and variance
are both equal to Xt and the mean arrival rate is X.

Although the pure birth process is not very interesting by itself, it does
form one component of the queueing process used in many models. One of
the results of this solution leads to a property referred to previously.
P = e~ implies that the probability that no births will occur during the

Xttime interval from o to t is e~ . Thus, the probability that the first
birth will occur in this time interval is (1 - e" ). If the random variable
T is the time of the first birth then the cumulative distribution function of
T is

F(t) = P{T < t} = 1 - e"Xt, t > o

Therefore, the probability density function of T is

which is an exponential distribution.
This result verifies that the expected time between arrivals is

E(T)= I tXe 'X tdt=I

The Pure Death Process

Assume that XR = o Jor all n > o and that p. = J L I . for n > 1. Also
assume that the system is in state EM at t = o. The first assumption
implies that births never occur, and so this is a pure death process with
a constant service rate until the process terminates at state E . The
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results are similar to the pure birth process except that this process is

the opposite. The differential equations reduce to

dP
- jitPn for n = 0, 1, 2, ... M - 1

dt

dP
M - - u P

" ^ Mdt

M-n is the number of events that have occurred in this proccess. The

probability that no events have occurred by time t is

P =e'^

The probability that M-n events have occured

P =A for n = 1, 2, ..., Mn (M-n)!

The remaining possibility is that M events have occured, so that

M

This is a truncated Poisson distribution with a parameter /it. The mean
service rate is {i until the process terminates. The distribution of elapsed

time between events is an exponential distribution.

Steady State Solution

The steady state solution for P maybe obtained either by solving for

Pn in the transient case and letting t — oo or by setting dPn/dt = o in the
differential equations and then solving for P . Since an elementary general
transient solution is not available for the birth-death process, the second
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approach will be used and an assumption made that a steady -state solution
exists, i.e.,

im Pn(t) =

and

lim,
dt

.= 0

For the differential equations,

0 = Xn-l Pn-l n+l Pn for n

o = ju« P., - A P for n = 0^11 o o

The equation for n = 0 yields

When n > o each equation yields

n n P - X , P 1^n n n-1 n-1

Considering the numerator of the second term when n > 1,

A 1n-1 P .. - u.n-i n

"A 1

n
Pn-l +

M 1 P 1n-1 n- i -Xn-2

^n

Pn-2

- Xn-l Pn-l = *Vl Pn-l ' Xn-2 Pn-2
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For successively smaller values of n this procedure must yield

Pn - Xn-l Pn-l = "l Pl ~ Vo

From the solution to the n = o equation

so that

Then

Pl = XoPo

Pn - Xn-l Pn-l

P - n"1 P 'n ^r^ n~l
n

or

n

vn-2
ln-2

n-2

n - 2 • ' •
o

1=0
n-1 °

IT"'
for n = 1, 2,

To determine P , it is known that

n=o
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so that

1
P°=- n-1

n=l n

For this information

L = > n P

and

nn

The summations do have analytic solutions for special cases, one of which
is the multiple server model with Poisson input and exponential service.
No other types of output have been solved for the case when S > 1. The
state probabilities for the Poisson input -exponential service will be used
^approximate the state probabilities for the simulation model. The model
assumes that arrivals occur according to a Poisson input with parameter
X and that the service time has an exponential distribution with mean (1/ju).
The mean service rate for the system is dependent on the state of the system
E . The mean service rate per busy server is ju. Therefore, the overall
service rate must be nju. provided that n < S. If n > S, so that all servers
are busy, /i = Sju. This is a special case of the birth death process with
X = X and

= S if n> S

If X < Sju,, the mean arrival rate is less than the maximum mean service
rate so that
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n-S

Since — < 1, the limit of the series

so that

'A
SjJ

1'8

n=S

1--A.
SjLl

n-S n

n! SI

n=o

and

_ W

nl
if o < n< S

n

PQ if n > S

S!
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Then

(n - S) Pn

3=°

00 -VS

si

oo

(P1)

Since P
<1 the limit of - 1 . p

J

J = 1 go that

« dp V1

,S

st
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W = Wq +

T •L = Lq + -

Weather Service Message Traffic and Distributions

The data for the message traffic was provided by the National Oceanic
and Atmospheric Administration's Environmental Research Laboratories in
Boulder, Colorado. The data were divided into three types of inputs in order
to develop distributions which could be utilized in the simulation model:

hurricanes reaching the east coast of the U. S.; weather warnings; and river
for casts and warnings.

The number of hurricanes reaching the east coast of the United States
per year is a random variable having a Poisson distribution with X = 1= 9
(ref. 2). This information was used to develop a hurricane simulation for
100 years. A multiplicative congruential uniformly distributed random

number generator was used to develop random numbers (ref. 3). These
numbers were then mapped to a cumulative Poisson distribution in order to
obtain the Poisson events. The hurricane simulation was used to develop a
"worst case" as an input for the communication satellite simulation model.

In the 40th year, two hurricanes reached the eastern part of the U. S. on
July 13. On July 14, another hurricane reached the east coast. Finally,

on October 3 of the 40th year, one more hurricane reached the east coast.

Using data from Hurricane Camille which occurred from August 12-14,

1969, a Poisson distribution was predicated for hurricane message traffic

(for satellite simulator) with an estimated parameter of X = 0. 019 per

minute during hurricanes. This assumption, if incorrect, will not affect the

model appreciably because the traffic for a hurricane is very small relative
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to the other two types of message traffic. The effect is to increase the
satellite channel requirements only during the periods mentioned above.
The assumption also causes the results to be more conservative since the
occurrence of three simultaneous hurricanes is a very remote possibility.

The weather warning data were provided for the 72 months from
January 1966 to December 1972. The data included the categories: tor-
nadoes and severe storms; hurricanes; small craft and gales; forecasts
for inland lakes; winter storm warnings; and other,

A Poisson distribution was also predicated for the weather warnings.
A Chi-square test was performed to determine the goodness of fit for a
Poisson distribution with a = 0. 05. The 72 months of data yielded a
parameter estimate of A = 0.1454 per minute. In order to• work with inte-
gral data, the test was performed on the expected number of messages per
hour which yielded an estimate of X = 8. 5. The experimental value for the

2Chi-square statistic was 18.1. The value of XQ Q5 with 11 degrees of
freedom was 19. 675 so that the hypothesis of a Poisson distribution for
the weather warnings could not be rejected,,

A time series analysis was performed on the weather warning data in
order to determine trends and seasonal variations. The data are shown in
figure 1. The trend was recovered by using linear regression. If x is
the number of years from 1965, and y is the average number of messages
per month for the year x, then the expression

y = 632 x + 4163

may be used to estimate the value of the expected number of messages per
month for a given year. The correlation coefficient of the regression was
r = 0. 96. Table I shows the seasonal variation in percentage of deviation
from trend and figure 2 is a graph of the irregular variations in percentage
of deviation from trend.

The trend shows that the average number of monthly messages is in-

x = 0, 1, 2, ... from base year 1966.
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creasing at the rate of 632 per year. Therefore, the Poisson parameter
should be increased in order to> allow for a larger number of messages per
month. It was not determined if there was actually more storms or whether
there is a tendency to saturate the communications facilities, but the latter
seems more likely. The Poisson parameter used for the simulation was
based on the trend value for 1972 which yielded a value of X = 0.1923 mes-
sages per minute.

The river forecast and warning data are treated in the same manner
as the weather warning data. Data were obtained for the sixty months from
January 1967 to December 1971. A Chi-square test was performed to
determine the goodness of fit for a Poisson distribution with a = 0.05. The
data yielded an estimate of X = 0. 5167 messages per minute. This was
converted to 31 messages per hour. The hypothesis of a Poisson distribution
could not be rejected at the a = 0. 05 level.

A time series analysis was performed on the river forecast data to
determine the trend and seasonal variations in the same manner as was
done for the warning data. Using the same notation as previously the aver-

o
age number of messages per month for the year x is given by

y = 2667 x + 15665

The correlation coefficient for this regression was r = 0.94. Table II
shows the seasonal variation in percentage of deviation from trend and fig-
ures 3 and 4 are graphs of the trend and irregular variations.

The trend shows that the average number of messages per month is
increasing at the rate of 2667 per year. The Poisson parameter was adjusted
to allow for a larger number of messages per month based on the year 1972
(X = 0. 7224 messages per minute).

2x = 0, 1, 2, .., from base year 1967.
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Message Processing Times

A classification was made of 21 different types of weather service
warnings and the average word length was provided by NOAA's Environ-
mental Research Lab in Boulder„ The average length of all 21 types was
136 words which also approximates the average speaking rate per minute.
No data were given on the frequencies of the 21 message types but the
average word length of each type was given.

Since the parallel-channel queueing equations require exponential
service, this distribution was selected arbitrarily. The average process-
ing time equals approximately one minute assuming a speaking of 137 words
per minute. It seems plausible that the majority of messages would require
1 or 2 minutes to transmit, but that occasionally, messages would be on the
order of 5 to 6 minutes. The exponential distribution allows for this possi-
bility. If the parameter n = 1 is used for the distribution, then the cumu-
lative distribution of 1-e where t is the processing time in minutes is

Minutes Cumulative Delta
probability probability

1 0.632 0.632
2 .865 .233

3 ,950 .085
4 .982 .032
5 .993 .011
6 o998 .005
7 .999 .001
8 1.000 .001

The delta probabilities may be interpreted to mean that 63. 2 percent of
all messages will have a processing time of 1 minute; 23. 3 percent have
times of 2 minutes; 8, 5 percent have times of 3 minutes, etc. Only inte-
gral values were used for processing times to allow the computer program
to perform most operations in integer arithmetic.
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The Simulation Model and Computer Program

As stated previously, the simulation model was developed to utilize
Poisson input and an exponential distribution for service. The computer
program utilized integer data when possible to minimize the CPU time.

The queueing process input consisted of three types of message traffic:
warning messages; river forecasts; disaster communications during and
after hurricanes. The Poisson parameters used for these inputs were:

Warning messages X = 0.1923
River forecasts X = 0. 7224
Disaster communication X = 0.057 from July 13-21

for hurricanes = 0. 019 from Oct. 3-11
= 0 Otherwise

The exponential service parameter was the same for all three inputs
(ju = 1.008). The program organization consisted of a main routine and
12 subroutines. The source program names are:

Main Routine NOAA - Serves as an executive routine and initializes
some parameters. Prompts user for satellite channel capacity and a seed
for the random number generator. Also contains a report generator.

Subroutine MACHST - Sorting routine which determines the soonest
available channel and then allocates that channel for use.

Subroutine FILL - Routine which calls the message distribution and
service routines and converts each non-zero event into a message queue
for one week in increments of one minute.

Subroutines NORDIS, RIVDIS, HURDIS - Routines which set Poisson
parameters for each type of message. Each calls Poisson generator and
then converts Poisson variable to an integral number of messages, (0, 1,
2, etc.). These integral events are then returned to subroutine FILL.

Subroutine MPROC - Routine which sets the parameter jit and calls
the exponential distribution subroutine to obtain a service time.

Subroutine GSERV - Routine which updates channel times and accumu-
lates idle channel times and waiting times for messages in the queue.
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Subroutine AVTIM - Routine which calculates average time and number
of messages in the system.

Subroutine AVUTIL - Routine which calculates average fractional channel
utilization and the average time spent in the queue.

Subroutine POISS - Routine which converts a uniformly distributed
random number to a Poisson distributed random number.

Subroutine EDIST - Routine which converts a uniformly distributed
random number tO'an exponentially distributed random number.

Subroutine Rand - Routine which generates uniformly distributed random
numbers between zero and one using a multiplicative congruential technique.

Using the convention that a given level may call only one subroutine at
the next lower level and that control is always returned to the calling sub-
routine, the flow of the program is depicted in sketch (c).

A copy of the program appears in appendix A. Sample outputs are given
in appendix B.
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RESULTS OF SIMULATION AND CONCLUSIONS

The simulation program was used to simulate one week for channel
numbers ranging from 1 to 20. The results are shown in table III and the
utilization factors are plotted in figure 5. :

Although the parameter used for the exponential distribution was 1.008,
the average message processing time for all runs asymptotically approaches
1. 6 because processing times less than 1 minute were not considered. The
effect of this restriction was a reduction in p. to 0. 625. Thus the data from
the simulation runs is somewhat conservative.

One of the essential requirements of the Natural Disaster Warning Sys-
tem is that there be no delay in the transmission of warning messages. From
the data in table in, this requirement means that the number of channels must
be greater than eight if the average processing time is 1. 6 minutes or more.

The queueing equations were used to analyze the sensitivity of the model
to changes in the parameter ju. The probability of being in state zero was
calculated for channels numbering from 3 to 20. Using P., the probability
of being in state (S + 1) was calculated for each number of channels from
3 to 20. This probability Pg. i is the probability of a message transmission
being delayed. Table IV shows the probabilities for X = 0.9717 per minute
and n = 1.008 per minute. The value X = 0. 9717 occurs only during the
period of 3 simultaneous hurricanes. Table V shows the probabilities P
and Pg.i for ju = 0.625 per minute or a service time of approximately
1. 6 minutes. ;

Although it is somewhat unrealistic to even consider such probabilities
as 0. 0000001, the concept may be employed to mean an almost virtual
certitude that the event will not occur in practice. To ensure that the sat-
ellite system would never reach state (S + 1) the arbitrary criterion was
established that Pg, i — 0.0000001 would determine the number of channels
sufficient to meet the no-delay requirement.

From tables IV and V it can be seen that S = 9 is sufficient for a service
time which averages approximately one minute and S = 11 is sufficient for
jit = 0. 625 or a service time which averages 1. 6 minutes.
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The probabilities P and PQ 1 were also calculated for average
O

service times of 2 and 3 minutes. The resulting estimates for S were
12 and 14, respectively.

As a verification of the model, there was no statistically significant
difference between the calculated Pq ^ and the number of delays occurring
for X = 0. 9717 and p. = 0. 625 (service time = 1 . 6 minutes) for S .= 3 to
S = 8 (table HI).

On the basis of the data used to establish the model a selection of
S = 10 channels would offer a number sufficient to meet the requirements
with a considerable safety margin. If such a choice were made table VI
demonstrates the effects of power degradation on the accessibility of the
satellite.

The information in table VI may be used to conclude that if 10 channels
were selected, the satellite could operate and be used effectively even with
a 50 percent degradation in power or transmission capability since delays
would be expected to occur at the average rate of 6 per 10 000 messages
transmitted. Moreover the maximum delay would probably not exceed
1 minute.
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APPENDIX A

COMPUTER PROGRAM

The computer program was written in FORTRAN IV and executed on
an IBM 360/67. The operating system TSS (Time Sharing System) allows
terminal type interactive processing and so the program was written to
be executed in a conversational mode.
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0000100
0000200
0000300
00001(00
0000500
0000600
0000700
0000800
0000900
0001000
OOQ1100
0001200
0001300
0001UOO
0001500
0001600
0001700
0001800
0001900
0002000
0002100
0002200
0002300
0002UOO
0002500
0002600
0002700
0002800
0002900
0003000
0003100
0003200
0003300
0003ltOO
0003500
0003600
0003700
0003800
0003900
0001(000
0001(100
0001(200
0001*300
OOOldtOO
0001(500
0001(600
0001(700
OOOU800
0001(900
0005000
0005100
0005200
0005300
00051(00
0005500

1032
C
C
C

MAIN ROUT I ME FOR THE COMMUNICATIONS SATELLITE

SIMULATOR FOR THE DISASTER WARNING SYSTEM.

DIMENSION ICHAN(200), IDLEC 200), ITYPJO)
INTEGER HI
INTEGER*2 IJNO(30GOO), IJIND(30000), IMCHDX(30000), IWAITOOOOO), -

1IPROCC30000),IQUE(llOOO)
DATA ITYPJ/'HURRVWARN1, 'Rl V.1/, ICHAN/200*!/

W R I T E ( 6 , 1 0 3 2 )
FORMATC ',T2, 'IF WEEK = 1,HIT RETURM;OTHERWI SE TYPE 1111)

INITIALIZE TIME PARAMETERS
READ(5,1001) IRND
IF( IRND. HE. 0) GO TO 50

IMINIT=0
IUK = 0

PROMPT FOR ENTRY OF NUMBER OF CHANNELS FOR SATELLITE

WRITE (6,1000)
READ (5,1001) NOCHAN

PROMPT FOR ENTRY OF A SEED TO START THE RANDOM
NUMBER GENERATOR.

WRITE (6,1002)
READ (5,1001) IGESS
READ (5,1001) ISKIP

EVENTS WILL BE GENERATED TO SIMULATE ARRIVALS FOR
60 MINUTES PER HOUR, 2k HOURS PER DAY, FOR 7 DAYS.
THIS INFORMATION WILL THEN BE USED TO FORM A QUEUE
WHICH IS THEN PROCESSED. AFTER PROCESSING,SEVEN
MORE DAYS OF INFORMATION ARE GENERATED AND
PROCESSED. THIS PROCEDURE IS CONTINUED UNTIL
A YEAR HAS ELAPSED IN THE SIMULATION.

GO TO 100

50 READ(9,1030) K,IMINIT,IWK,NOCHAN,IGESS,I SKIP,Z,KKJ1, KKJ2,KJ1,KJ2
READ (9,1031) (I CHAN (UK), IJK=1,200)
CALL RAMD(Z,IGESS,KKJ1,KKJ2,KJ1,KJ2)
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0005GQO C
0005700 C
0005800 C
0005900 C
0006000 C
0006100 100
0006200
0006300 C
00061)00 C
0006500 C
0006GOO C
0006700 C
0006800
0006000
0007000
0007100 200
0007200 C
0007300 C
0007UOO C
0007500 C
0007600 C
0007700 C
0007800
0007900 C
0008000 C
0008100 C
0008200
0003300
00081*00
0008500
0008600
0008700 C
0008800 600
0008900
0009000
0009100
0009200
0009300
0009<(00
0009500
0009500
0009700
0009800
0009900
0010000 650
0010100
0010200
0010300
00101(00
0010500
0010600
0010700
0010800 C
0010900 C
0011000 C

SUBROUTINE FIL L GENERATES THE EVENTS AND TRANSFORMS
NONZERO EVENTS INTO MESSAGES POR A QUEUE.

CALL FILLd JNO,I JIND,IPROC,K,IMIMIT,IJOB,IGESS,KKJl,KKJ2,KJ1,KJ2)
K=l

SUBROUTINE GSERV PROCESSES THE QUEUE.

DO 200 1=1,IJOB
CALL GSERVd, IJNO,MIN, I CHAH,NOCHAN, IMCHDX,IJIND, IDLE, I WAIT,-

1IPROC,IQUE) , . .
CONTINUE

SIMULATION FOR 1 WEEK COMPLETED. BEGIN PROCESSING
OF QUEUE FOR PRINTING.

PRINT HEADING ROUTINE

WRITE (7,100l»)
WRITE (7,1005)
WRITE (7,1006)
WRITE (7,1007) .
WRITE (7,1008) NOCHAN

IWK=IWK+1
WRITE (7,1009)
WRITE (7,1010) IWK
MAXWT=0
NOMAX=0 "
NOARRV=0
NOFIN-0
DO 650 KK=1,IJOB
IF (IJ-IND(KK).LE.10080) NOARRV-NOARRV+1
IFIN=IJIND(KK)+IWAIT(KK)+IPROC(KK)
IF (IFIN.LT.10080) NOFIN=NOFIN+1
IF ({IWAIT(KK).GT.MAXWT).AND.<IJIND(KK).LE.10080)> MAXWT-IWAIT(KK)
CONTINUE
WRITE (7,1011) NOARRV
WRITE (7,1012) NOFIII
PDMINS=10080
L0=l . •
Hl=10080
CALL AVTIMU J I ND, LO,HI , NOARRV, ARRV,SUM, IJOB, IQUE,PDMI.NS,SUMQUE, I WAI T, I PROC)
CALL AVUTIL( IDLE,SUMIDL,NOCHAN,SUMWT,IJ IND,IWAIT,ARRV,HI ,LO, IJOB,PDMINS)

AVTIM AND AVUTIL ARE USED TO CALCULATE THE AVERAGE
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0011100 C TIME II! THE SYSTEM,AVERAGE NUMBER IN THE SYSTEM,
,ND THE AVERAGE TIME
IATIOM, THE AVERAGE
ID BY SUBTRACTING TH
'HE AVERAGE TIME It)

IN THE SYSTEM
R U! THE SYSTEM
IOMAL CHANNEL UTILIZAT
IN THE QUEUE

AVERAGE PROCESSING TIME

0011200 C
0011300 C
0011400 C
0011500 C
0011COO C
0011700 C
0011800 C
0011900 C
0012000 C
0012100 C
0012200 C
C012300 C
0012400 C
0012500
OQ12GOO
Q012700
0012800
0012900
0013000
0013100 C
0013200 C
0013300 C
00131*00 C
0013500 C
0013600
0013700
0013800
0013900 690
0011*000
0011*100
0011*200
001U300
0011*1*00
0011*500
001U600
001U700
0011*800
0011*900
0015000
0015100
0015200
0015300
O015'*00
0015500
0015600
0015700
0015800
0015900 C
0016000 C
001C100 C
0016200 C
0016300 C
00161*00 700
0016500

FRACTIONAL CHANNEL UTILIZATI
IN THE QUEUE. USING THIS IN
PROCESSING TIME CAM BE DETERI
AVERAGE TIME IN THE QUEUE. FRi
THE SYSTEM.

SUM = AVERAGE TIM
SUMQUE= AVERAGE NUM
SUMIDL= AVERAGE FRA1

SUMWT = AVERAGE TIM
AVPROC= SUM-SUMWT=

f

AVPROC=SUM-SUMWT
WRITE (7,102l») SUM
WRITE (7,1025) SUMQUE
WRITE (7,1026) SUMIDL
WRITE (7,1027) SUMWT
WRITE (7,1028) AVPROC

DETERMINE MAXIMUM W,

"
DO 690 KK = 1, 1 JOB
IF (IWAIT(KK) .LT.MAXWT) GO TO 690
NOMAX=NOMAX+1
CONTINUE
WRITE (7,1029) MAXWT,MOMAX
IF (ISKIP.EQ.l) GO TO 810
IPAGE=1
WRITE (7,101U) |WK,IPAGE
WRITE (7,1016)
WRITE (7,1017)
WRITE (7,1018).
WRITE (7,1016)
IF (ISKIP.EQ.l) GO TO 810
DO 800 KK = 1, MOB
IF (1 JIND(KK) .GT. 10080) GO TO 800
IPG=MOD(KK,55)
IF ( IP&.NE.O) GO TO 700
IPAGE = IPAGE+1
WRITE (7,1011*) IWK, IPAGE
WRITE (7,1016) .
WRITE (7,1017)
WRITE (7,1018)
WRITE (7,1016)

COtlVERT ARRIVAL TIMI

IART=IJIND(KK)
IREM=MOD(IART,ll*l*0)
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0010600
001G700
0016800
0016000
0017000
0017100
0017200
0017300
0017'tOO
0017500
CC17GCO
0017700
0017800
0017900
0018000
0018100
C01S200
0013300
G018UOO
0018500
0018600
0018700
0018800
0018900
nniocoo
0019100
0019200
0010300
00191(00
0013500
001DGOO
0019700
0019800
0019900
0020000
0020100
0020200
0020300
O020.'t00
0020500
OC20COO
OC20700
0020800
0020900
0021000
C0211CO
0021200
0021300
OD21i|00
0021500
0021000
0021700
0021800
0021DOO
0022000

C
C
C
C
C

C
C
C
C
C

soo
C
C
C
C
C
C
C
C
810

82.5

900
C
C

C
C

IF (1REM.EQ.O) IDAYl = IART/ll»UO
IF (IREM.NE.O) IDAY1 = IART/1!*I(0 + 1
IREM=I ART-( IDAYl-l)*ll»l»0
IREM1=MOD( IREM,GO)
IF (IREM1.EQ.O) IHR1=IREM/60
IF (IREM1.NE.O) IHR1=IREM/60 + 1
MIN1=I ART-(1DAYl-l)*ll*UO - (IHR1-1)*60

COHVERT FI N I S H TIME TO SAME FORMAT

I F I M = I JIND(KK) + IWAIT(KK) + IPROC(KK)
IREM=MOD( IFIN,1I»UO)
IF (IREM.EQ.O) IDA2 = IFIM/ll(l»0
IF (IREM.NE.O) IDAY2 = IFIN/ll(l(0 + 1
IREM=IFIN-(IDAY2-l)*Hl(0
IREM1=MOD(I«EM/60)
IF (IREM1.EQ.O) IHR2=IREM/CO
IF (IREM1.NE.O) IHR2=IREM/GO + 1
HIM2 = lFIN-( IDAY2-D*lUl(0-( IHR2-1)*60
KJTYP=IJNO(KK)

PRINT MESSAGE LOG

WRITE (7/1023) KK, IDAY1, IHR1,MIN1, IDAY2, IHR2,MIH2/ 1 TYPJ(KJTYP) , -
IIMCHDX(KK), IPROC(KK), IWAIT(KK)
CONTINUE

IF WEEK IS 52, THE PROGRAM 13 FINISHED;
OTHERWISE ALL TABLES MUST BE CLEARED FOR
THE NEXT WEEK.

CONTINUE
IF (IWK.EQ.52) GO TO 1500
J = 0
DO 9C3 1=1, (JOB

IJMO(I)=0
IJIMD(I)=0
IHCHDXd )=0
IWAIT(I)=0
IPROC( 1 )=0

CONTINUE

CLEAR IQUE AND UPDATE ICHAN.
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0022100
C022200
0022300
00221*00
0022500
0022600
0022700
0022800
0022900
0023000
0023100
0023200
0023300
00231*00
0023500
0023600
0023700
0023800
0023900
n n. o fi n n nU U / <4 U U U

0021*100
0021*200
0021*300
0021*1*00
0021*500
0021*600
0021*700
002U800
ft n o i, n ft ftU U L 4 y U U
n n 7 c n n nU U £. 3 U U U

0025100
0025200
0025300
00251*00
0025500
0025600
0025700
0025800
0025900
0026000
0026100
0026200
0026300
00261*00
0026500
0026600
0026700
0026800
0026900
0027000

C

910

9UO

935

C
C
c
c
1000
1001
1002
1001*
i ft ft r1U U J

1006
1007
1008
1009
1010
1011
1012
1011*
i n i K1U 1 U

1017

1018

1023

1021*
1025
1026
1027
1028
1029
1030
1031

C
C
C
1500

DO 910 1=1,10080
IQUE(I)=0
DO 91*0 1=1,200
IDLEd )=0
ICHANC 1 )=1
CALL RAND(Z, IGESS, KKJ1, KKJ2, KJ1, KJ2 )
CONTINUE
WRITE(8,1030) K, IMINIT, IWK,NOCHAN, IGESS, 1 SKI P, Z, KKJ1, KKJ2, KJ1,KJ2
WRITE (8, 1031) (ICHANC UK), IJK = 1,200)
GO TO 1500

FORMAT STATEMENTS

FORMAT C' ',T2, 'ENTER NUMBER. OF COMMUNICATION CHANNELS IN FORMAT 13')
FORMAT (13)
FORMAT C ',T2,' ENTER A RANDOM NUMBER BETWEEN 1 AND 999 IN FORMAT 13')
FORMAT Cl',T2, ' ')

FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMATr v unH I

FORMAT
1 CHAN
FORMAT
1 ASSGN
FORMAT

1T75, ' | '
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT

V

(
(
(
(
(
(
(
(
/V

(
.

(

i i
i i

'0'
1 . '
1 1
1 1
1 1

'!'
1 1

1 1

1i i

, 1 JU ,

,T56,
,T56,
,Tl*l*,
,T2,'
,T25,
,T52,
,T52,
,T25,
T1) c

/ 1 L j f

,T25,

'* COMM. SATELLITE *')
'* SIMULATE • •' )
'NO. OF CHANNELS=',T61, 13,T75, 'WEEKS SIMULATED" 52')

'WEEK',T30, 12)
'MO. OF
'NO. OF
'WEEK-1,
i

' I MSG
PROCESS |

,T25, 1 1 NO .
. I MINS. I
(
,
(
(
(
(
(
(

i i

16,
i i
i i
1 '
i i
i i

'0'
FORMAT(6I10
FORMAT(

,T25,
T86, '
,T52,
,T52,
,T52,
,T52,
,T52,
,T52,
,F15.

' 1 ' , 15, T

ARRIVALS DURING PERIOD =
MSGS COMPLETED THIS PD.=
I3,T100, 'PAGE-1,

,

I ARRIVAL TIME
WAIT I 1 )
I DAY HR. MIN.
MINS. I 1)
33, ' I ', U, U, 15,

U)

I FIN

1 DAY

T50,'|',

',T8U
',T8l*

,16)
,16)

ISH TIME

HR.

1 1*, 1 1*

MIN.

,15,

1 MSG . | -

I TYPE |-

T66, "1 ',T69,Al*,-
r,l6,T98,'|',l5,3X,'r)
'AVERAGE
'AVERAGE
'AVERAGE
'AVERAGE
'AVERAGE

TIME IN SYSTEM
NO. IN SYSTEM
FRACTIONAL CHAN
TIME IN QUEUE
PROCESSING TIME

'THE MAXIMUM DELAY OF', 1
12,1*110)

a

=

. UTIL.=
n

=

,T8l*
,T8l*
,T8l*
,T8U
,T8I»

,F7.
,F7.
,F8.
,F7.
,F7.

1)
1)
2)
1)
1)

5,' MINUTES OCCURRED1, 15,' TIMES')

200110)

CONTINUE
STOP
END
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0000100 SUBROUTINE MACHSTCMIN,IMACH,MOMACH)
0000200 DIMENSION IKACH(200)
0000300 MIN-1
00001(00 DO 100 J = 2,NOMACH
0000500 IF (IMACH(MIN).LE.IMACH(J)) GO TO 100
0000600 MIN=J
0000700 100 CONTINUE
COQOSOO RETURN
0000900 END
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0000100
0000200
0000300
00001(00
0000500
0000600
0000700
0000800
0000900
0001000
0001100
0001200
0001300
00011(00
0001500
0001600
0001700
0001800
0001300
0002000
0002100
0002200
0002300
00021(00
0002500
0002600
0002700
0002800
0002900
0003000
0003100
0003200
0003300

. 00031*00
0003500
0003600
0003700
0003800
0003900
0001(000
0001(100
0001(200
0001(300
OOOUUOO
0001(500
OOOUGOO
0001(700
0001(800
0001(900
0005000
0005100
0005200
0005300
00051(00
0005500

SUBROUTINE FILU UNO,IJI NO,IPROC,K,IMINIT,I JOB,IGESS,KKJ1,KKJ2,KJ1,KJ2)

SUBROUTINE FIL L GENERATES THE EVENTS AND TRANSFORMS .
NONZERO EVENTS INTO MESSAGES FOR A QUEUE.

INTEGER*2 UNO,IJI NO,IPROC
DIMENSION IJNOC30000),IJIND(30000),IPROCC30000)

IF(K.EQ.l) GO TO 200
IJOB=0
DO 100 1=1,10080
I M I N I T - I
CALL NORDIS(NOEVTS,IGESS,KKJ1,KKJ2,KJ1,KJ2)
IF(NOEVTS.EQ.O) GO TO 25

10 I JOB = IJOB + 1
I JNO(IJOB) = 2
I J I N D C I J O B ) = I
CALL MPROCCMSERV, IGESS,KKJ1,KKJ2,KJ1,KJ2)
IPROC(IJOB)=MSERV
NOEVTS=NOEVTS-1
IF(NOEVTS.GT.O) GO TO 10

25 CONTINUE

CALL RIVDISCNOEVTS,IGESS,KKJ1,KKJ2,KJ1,KJ2)
IF(NOEVTS.EQ.O) GO TO 100

30 I JOB=IJOB.+ 1

IJNO(IJOB)=3

I J I M D C I J O B ) = I
CALL MPROCCMSERV, I GESS, KKJ1, KKJ2,KJ1, KJ2)
IPROCdJOB)=MSERV
NOEVTS=NOEVTS-1
IF(MOEVTS.GT.O) GO TO 30

100 CONTINUE
110 GO TO UOO
200 DO 300 1=1,10080

IMI N I T = I M I N I T + 1
IFCCIMINIT.LT.279360).OR.(IMINIT.GT.293760)) GO TO 210
CALL HURDIS(MOEVTS,IMINIT,IGESS,KKJ1,KKJ2,KJ1,KJ2)
IF(NOEVTS.EQ.O) GO TO 210

205 IJOB=IJOB+1
IJNO(IJOB)=1
I JIND(IJOB) = I
CALL MPROCCMSERV,IGESS,KKJ1,KKJ2,KJ1,KJ2)
IPROCCIJOB)=MSERV
NOEVTS=NOEVTS-1
IF(NOEVTS.GT.O) GO TO 205

210 IF((IMINIT.LT.3971»l»0).OR.(IMINIT.GT.I»118l(0)) GO TO 220
CALL HURDISCNOEVTS,IMI»IT,IGESS,KKJ1,KKJ2,KJ1,KJ2)

- IF(NOEVTS.EQ.O) GO TO 220
215 IJOB=IJOB+1

IJNO(IJOB)=1
IJIND(IJOB)=I
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0005600
0005700
OOQ5SOO
00(15900
0006000
0006100
0005200
OOCG300
00061*00
COOS500
0006500
0006700
0006300
OCOG900
0007000
0007100
0007200
0007300
0007400
0007500
0007GOO
QCG7700
0007800
0007900
0008000
0008100
0008200
0008300
00081(00
0008500

CALL MPROCCMSERV,IGESS,KKJ1,KKJ2,KJ1,KJ2)
IPROCCUOB)=MSERV
NOEVTS=NOEVTS-1
IF(NOEVTS.GT.O) GO TO 215

220 CALL NORDISO.'OEVTS, IGESS,KKJ1,KKJ2,KJ1,KJ2)
IF(NOEVTS.EQ.Q) GO TO 230

225 IJOB=IJOB+1
IJNO(IJOB)=2
IJ I M D C I J O B ) = I
CALL HPROC(HSERV,IGESS,KKJ1/KKJ2, KJ1, KJ2)
IPROC(IJOB)=MSERV
NOEVTS = NOEVTS-1
IF(f!OEVTS.GT.O) GO TO 225

230 CONTINUE

CALL R lVDISCMOEVTS, IGESS,KKJ1 ,KKJ2 ,KJ1 ,KJ2 )
I F ( M O E V T S . E Q . O ) GO TO 250

235 IJOB=IJOB+1
IJ I JO( I JOB)=3
IJINOdJOB)«I
CALL MPROCd'ISERV, I GESS, KKJ1, KKJ2, KJ1, KJ2 )
I P R O C C I J O B ) = M S E R V
NOEVTS=NOEVTS-1
I F ( N O E V T S . G T . O ) GO TO 235

250 CONTINUE
300 CONTINUE .
l»00 CONTINUE

RETURN
END
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0000100
0000200 C
0000300 C
00001*00 C
0000500
0000600 C
0000700 C
0000800 C
0000900 C
0001000
0001100
0001200
0001300
00011*00
0001500

SUBROUTINE RIVDIS(NOFVTS,IGESS,KKJ1,KKJ2,KJ1,KJ2)

THIS SUBROUTINE CALLS A POISSON DISTRIBUTED GENERATOR
WHICH DEVELOPS THE NUMBER OF SIMULTANEOUS RIVER
WARNING MESSAGES

REAL LAMDA
LAMDA=0.722lt
CALL POISS(LAMDA,NOEVTS, I GESS, KKJ1, KKJ2, KJ1, KJ2 )
CONTINUE
RETURN
END
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0000100
0000200
00003CO
OOOOitOO
0000500
0000600
0000700
0000800
0000900
OOC1000
0001100
0001200
0001300
0001400
0001500
0001GOO
0001700
0001800

SUBROUTINE HURD I S(NOEVTS, IMIMIT,IGESS,KKJ1,KKJ2,KJ1,KJ2)

THIS SUBROUTINE CALLS A POISSON DISTRIBUTED GENERATOR WHICH
DEVELOPS THE SIMULTANEOUS NUMBER OF HURRICANE WARNING
MESSAGES

? REAL LAMDA
IF(IMINIT.GT.293760) GO TO 1
LAHDA=0.057
GO TO 2

1 LAMDA=0.019
2 CALL POISS(LAMDA,NOEVTS, IGESS,KKJ1,KKJ2,KJ1, KJ2)

CONTINUE
RETURN
END
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0000100
0000200 C
0000300 C
0000400 C
0000500 C
OOOOGOO C
0000700 C
0000800 C
0000900 C
00010X10 C
onoiioo
0001200
0001300
OOCl'iOQ
0001500
0001600

SUBROUTI ME NORDIS(NOEVTS,IGESS,KKJl,KKJ2,KJ1,KJ2)

THIS SUBROUTINE CALLS A POISSOM DISTRIBUTED GENERATOR
WHICH DEVELOPS THE NUMBER OF SIMULTANEOUS MESSAGES OR
EVENTS FOR A PROCESS WHICH HAS A PROBABILITY DENSITY
FUNCTION W H I C H - I S DISTRIBUTED AS A POISSOM DENSITY
FUNCTION.

REAL LAMDA
LAMDA=0.1923
CALL POISS(LAMDA,NOEVTS, I GESS,KKJ1, KKJ2, KJ1, KJ2 )
CONTINUE
RETURN
END
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0000100 SUBROUTINE MPROCCMSEP.V, IGESS, KKJ1, KKJ2, KJ1, KJ2)
0000200 C
0000300 C
00001(00 C
0000500 C THIS SUBROUTINE IS USED TO DEVELOP A PROCESSING TIME FOR
0000600 C MESSAGES. THE DISTRIBUTION TIME IS EXPONENTIAL AND
0000700 C BASED ON HISTORICAL VALUES FOR MESSAGE PROCESSING TIMES.
0000800 C
0000900 C
0001000 REAL MU
0001100 MU=1.C08
0001200 CALL EDIST (MU,MSERV,IGESS,KKJ1,KKJ2,KJ1,KJ2)
OC01300 CONTINUE
OOOHtOO RETURN
0001500 END
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0000100
0000200
0000300
00001(00
0000500
0000600
OOOC700
0000800
0000900
0001000
0001100
0001200
.0001300
00011(00
0001500
0001600
0001700
0001800
0001900
0002000
0002100
0002200
0002300
00021(00
0002500
0002600
0002700
0002800
0002900
0003000
0003100
0003200
0003300
00031(00
0003500
0003600
0003700

SUBROUTINE GSERVC I , I JNO,Mlt), I CHAM, MOCHAN, IMCHDX, I JIMD, IDLE, IWAIT, IPROC, IQUE)
C
C SUBROUTINE GSERV PROCESSES THE QUEUE.
C
C

DIMENSION ICHAN(200)/ IDLEC200)
INTEGER*2 UNO, IMCHDX, I Jl ND, IWAIT, I PROC, IQUE

C
DIMENSION UNO(30000),IMCHDX(30000),IWAIT(30000)
DIMENSION IPROC(30000), IQUEC11000),IJIMD(30000)

CALL MACHSTUMN,ICHAN,NOCHAN)
li;CHDX( I )=MIN
IF(ICHAN(MIN).GT.IJIHD(I)) GO TO 1105
IWAITCDnfl

IDLE(MIM) = IDLE(MIN)tlJIND(l ) -1 CHAN(MlfJ)
ICHAN(MIN) = IJIND(I )
GO TO 1110

1105 IWAIT(I)=ICHAN(MIH)-IJIND(I)
1110 IFIN=IJIND(I)+IWAIT(I)+IPROC(l)

I F I N 1 = I F I N
I F I N 2 = I J I M D ( I )
DO 1115 ITIND-IFIN2,IFIN1

1115 IQUE(ITIND)=IQUE(ITIND)+1
ICHAN(MIN)=ICHAN(MIN)+IPROC(I)

1120 CONTINUE
RETURN
END
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C00010C
0000200 C
0000300 C
OOOOUOO C
0000500 C
0000600
0000700
0000800
0000900
0001000
0001100
0001200
0001300
OOOHtOO
0001500 100
0001600
0001700
0001800
C001900 200
0002000
0002100
0002200

SUBROUTINE AVTIMCIdIND,LO,HI , NOARRV, ARRV,SUM, I JOB, I QUE, PDMI NS,SUMQUE, I VIA IT, I P^OC)

THIS SUBROUTINE CALCULATES THE AVERAGE TIME IN THE SYSTEM.
AND THE AVERAGE NUMBER OF MESSAGES IM THE SYSTEM.

DIMENSION IJINDC30000),IQUE(llOOO),IWAITC30000),IPROCC30000)
INTEGER*2 IJIND, IQUE, IV.'AIT, IPROC
INTEGER HI
SUMQUE=O.
SUM=O.
DO 100 KKK=1,IdOB
IF (IdlND(KKK).LT.LO) GO TO 100
IF (IdlND(KKK).GT.HI) GO TO 100
SUM=SUM+IWAIT(KKK)+IPROC(KKK)
CONTINUE
ARRV=NOARRV
SUM=SUM/ARRV
DO 200 I=LO,HI
SUMQUE=SUMQUE+IQUE(I)
SUMQUE=SUMaUE/PDMINS
RETURN
END
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0000100
0000200 C
0000300 C
OGOQltOO C
0000500 C
0000600
0000700
0000300
0000300
0001000
0001100
0001200 100
0001300
00011(00
0001500
0001600
0001700
0001800
0001900 200
0002000
0002100
0002200

SUBROUTINE AVUTIU I OLE, SUM I DL,NOMACH,SUMWT, MIND, IWAIT,ARRV,HI,LO, IJOB,PDHRS)
THIS SUBROUTINE IS USED TO CALCULATE THE FRACTION OF
TIME THE COMMUNICATION CHANNELS ARE USED AMD THE AVERAGE .
WAITING TIME IN THE QUEUE.

I!1TEGER*2 IJIND, IV/AIT
DIMENSION IDLEC200),IJIND(30000),IWAITC30000)
INTEGER HI
SUMIDL=0.
SUMWT=0.
DO 100 KKK=1,NOMACH
SUMIDL=SUMIDL+IDLE(KKK)

DMACH=NOHACH
SUMIDL=(PDHRS-SUMIDL/DMACH)/PDHRS
DO 200 1=1,1JOB
IF (IJINDd).LT.LO) GO TO 200
IF (IJIND(I5.GT.HI) GO TO 200
SUMWT=SUMWT+IWAIT(I)
CONTINUE
SUMWT=SUMWT/ARRV
RETURN
END
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0000100 SUBROUTINE POISS(LAMDA,NOEVTS,IGESS,KKdl,KKJ2,KJ1,KJ2)
0000200 C
0000300 C THIS SUBROUTINE MAPS A UNIFORMLY DISTRIBUTED RANDOM NUMBER ONTO
OOOOUOO C A CUMULATIVE POISSON DISTRIBUTION IN ORDER TO OBTAIN A POISSON
0000500 C DISTRIBUTED RANDOM NUMBER.
0000600 C
0000700 DIMENSION PROB(IO)
0000800 REAL NFACT,LAMDA
0000900 NFACT=1.0
0001000 PZERO=EXP(-LAMDA)
0001100 DO 100 N=l,10
0001200 NFACT=NFACT*N
0001300 PROB(N)=(LAMDA«*N)*EXP(-LAMDA)/NFACT
00011(00 100 CONTINUE
0001500 CALL RANDCZ,IGESS,KKJ1,KKJ2,KJ1,KJ2)
0001600 NOEVTS=0
0001700 Z=Z-PZERO
0001800 IF (Z.LT.0.0) GO TO 300
0001000 NOEVTS=NOEVTS+1
0002000 DO 200 N = l,10
0002100 Z=Z-PROB(N)
0002200 IF (Z.LT.0.0) GO TO 300 '
0002300 NOEVTS=NOEVTS+1
00021*00 200 CONTINUE
0002500 300 CONTINUE
0002600 RETURN
0002700 END
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0000100
0000200
0000300
00001*00 C
0000500 C
0000600 C
0000700
0000800
0000900
0001000
Q001100
0001200
0001300 100
00011*00 200
0001500
0001500
0001700
0001800
0001900
0002000 300
0002100
0002200

SUBROUTINE ED IST(MU,MSERV,IGESS,KKJ1,KKJ2,KJ1,KJ2)

THIS SUBROUTINE MAPS A UNIFORMLY DISTRIBUTED RANDOM NUMBER ONTO
A CUMULATIVE EXPONENTIAL DISTRIBUTION IN ORDER TO 'QBTAI N AN
EXPONENTIALLY DISTRIBUTED RANDOM NUMBER.

DIMENSION PROBU50)
REAL MU
DATA I/I/
IF (I.EQ.O) GO TO 200
1=0
DO 100 N=l,50
PROB(N)=1.0-EXP(-MU*N)
CONTINUE
MSERV=1
CALL RANDCZ,IGESS,KKJ1,KKJ2,KJ1,KJ2)
DO 300 N=l,50
IF (Z.LT.PROB(N)) GO TO 300
MSERV»MSERV+1
CONTINUE • '
RETURN
END • '
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0000100
0003200
0000300
OOOOiiOO
0000500
0000600
0000700
0000800
0000900
0001000
0001100
0001200
0001300
0001UOO
0001500
C001GOO
0001700
0001800
0001900
0002000 200
0002100
0002200
0002300
0002UOO

100

300

SUBROUTINE RANDCZ,1GESS,A,X, I , I'SW)

SUBROUTINE RAND GENERATES UNIFORMLY DISTRIBUTED RANDOM NUMBERS.

INTEGER A,X
M=2**20
FM=M
IF (I .EQ.l)
1=1
X=566387
A=2**10+3

GO TO 100

FX = X
Z=FX/FM
IF (ISW.EQ.l) GO TO 300
DO 200 K=l, IGESS
X=MOD(A*X,M)
FX=X
Z=FX/FM
CONTINUE
ISW=1
CONTINUE
RETURN
END
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APPENDIX B

SAMPLE COMPUTER OUTPUTS

The output from the computer program consists of statistics and a
message log. The first example consists of statistics and one page of
the message log for week one of a simulation of 4 communication channels.
The second example consists of only the statistics for week 43 of a simula-
tion of 10 communication channels. The message log may be printed or
suppressed at the users option.
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******!• ****-» ********
* COMM. SATELLITE *
* SIMULATION •

NO. OF CHANNELS" ' U WEEKS8" SIMULATED" '52

WEEK 1
NO. OF ARRIVALS DURING PERIOD - 93U5
NO. OF MSGS COMPLETED THIS PD.» 93U3
AVERAGE TIME IN SYSTEM = 1.6
AVERAGE NO; IN SYSTEM •> 2. k
AVERAGE "FRACTIONAL CHAN. UTIL.= 0.37
AVERAGE TIME IN QUEUE = 0.0
AVERAGE PROCESSING TIME = 1.6

THE MAXIMUM DELAY OF U MINUTES OCCURRED 1 TIMES
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V/EEK= 1 PAGE=

MSG
N O .

1
2
3
i*
5
fi
7
8
9

10
11
12
13
lit
15
16
17
18
19
20
21
22
23
21*
25
26
27
28
29
30
31
32
33
3i»
35
36
37
38
39
1*0
1*1
U 2
1*3
!»!*•
1*5
1*6
1*7
1*8
1*9
50
51
52
53
5U

A R R I V A L T I M E
D A Y H R . M I N . i

1 1 1 *
1 1 1 :

1 1 1
1 1 2
1 1 1 *
1 1 l * ^
1 1 5
1 1 8
1 1 9
1 1 12
1 1 13
1 1 13
1 1 11*
1 1 15
1 1 15
1 1 1 5
1 1 16
1 1 18
1 1 18
1 1 19
1 1 20
1 1 22
1 1 2U
1 1 2 8
1 1 31
1 1 3 2
1 1 35
1 1 36
1 1 37
1 1 38
1 1 39
1 1 1*1*
1- 1 1*6
1 1 1*6
1 1 1*6
1 1 1*7
1 1 51
1 1 51
1 1 52
1 1 52
1 1 53
1 1 5lt
1. 1 56
1 1 57
1 1 58
1 1 58
1 1 58
1 1 59
1 1 60
1 2 1 * .
1 2 5
1 2 5
1 2 5 '
1 2 6

F I N I S H TIME
D A Y H R . M I N .

1 1 2
1 1 2
1 1 2 .
1 1 3
1 1 7
1 1 ~ 6
1 1 6
1 1 9
1 1 11
1 1 13
1 1 11*
1 1 11*
1 1 1 5
1 1 16
1 1 16
1 1 1'6 •
1 1 18
1 1 1 . 9
1 1 19
1 1 20
1 1 21
1 1 2 3
1 1 25
1 1 29
1 1 32
1 1 31*
1 1 36
1 1 39
1 1 1*0
1 1 39
1 1 1*2
1 1 1*8
1 1 U 9
1 1. 1*7
1 1 1*7
1 1 1*8
1 1 51*
1 1 5U
1 1 53
1 1 5 3
1 1 51*
1 1 57
1 1 57
1 1 58
1 1 59
1 1 59
1 1 59
1 1 60
1 2 1 *
1 2 5
1 2 9
1 2 7
1 2 6
1 2 7

MSG,
TYPE

WARN
R I V .

. ' . R I V .
R I V .
WARN

- R I V .
R I V .
R I V .
R I V .
R I V .
WARN
R I V .
R I V .
W A R N
R I V .
R I V .
W A R N
W A R N
R I V .
R I V . -
R I V .
R I V .
R I V .
R I V .
R I V .
R I V .
R I V .
WARN
R I V .
R I V .
W A R N
R I V .
R I V .
R I V . J
R I V .

" R I V .
WARN
R I V .
R I V .
R I V .
W A R N
WARN
R I V .
R I V .
W A R N
WARN
R I V .
R I V .
R I V .

. R I V .
W A R N
R I V .
R I V .
W A R N

CHAN.
ASSGN.

-1
;.2

'•:. 3
. '~ i» •

i
2
3

"1*
2
3
1
1*
2
3
1
1*
2
1
3
I*
2
1
3
t*
2
1
3
1*
2
1
3
1
1*
2
3
2
3
1
2
1*
2
1*
1
2
3
1
i*
2
1
3
i*
2
1
3

PROCESS
M I N S .

1
1
1
1
3
2
1
1
2
1
1
1
1
1
1
1
2
1
1
1
1
1
1
1
1
2
1
3
3
1
3
1*
3
1
1
1
3
3
1
1
1
3
1
1
1
1
1
1-
i*
1
i*
2
1
1

WA 1 T |
M I N S . |

0
0
0
0
0
0
0
0
0
0
0
0
0
0
o •
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

. 0
0
0
0
0
0

• o
0
0
0
0
0
0
0
0
0
0
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********************
*
*

* COMM. SATELLITE
* SIMULATION

NO. OF CHANNELS' 1.0 UEEKS SIMULATED= 52

WEEK 1*3
NO. OF ARRIVALS DURING PERIOD
NO. OF MSGS COMPLETED THIS PD,
AVERAGE TIME IN SYSTEM
AVERAGE NO. IN SYSTEM
AVERAGE FRACTIONAL CHAN. UTIL,
AVERAGE TIME IN QUEUE
AVERAGE PROCESSING TIME

9193
9192

.1.6
2.it
O.lfc
0.0
1.6

THE MAXIMUM DELAY OF 0 MINUTES OCCURRED 9193 TIMES
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FOR CHANNELS NUMBERING 1 TO 20

Number
channels

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

Average
time in
system

2.9
2.9
1.8
1.6
1.6
1.6
1.6
1.6
1.6
1.6
1.6
1.6
1.6
1.6
1.6
1.6

1.6
1.6
1.6
1.6

Average
number

in system

3.7
3.7
2.6
2 .4
2.4
2.4
2.4
2.4
2.4
2.4
2.4
2.4
2.4
2.4
2.4
2.4
2 .4
2.4
2.4
2.4

Average
fraction
channel

utilization

0.77
0.74
0.49

.37

.30

.25

.21

.19

.16

.15

.13

.12

.11

.11

.10

.09

.09

.08

.08

.07

Average
time in
queue

1.4
1.4
0.2

.0

.0

.0

.0

.0

.0

.0

.0

.0

.0

.0

.0

.0

.0

.0

.0

.0

Average
processing

time

1.6
1.6
1.6
1.6
1.6
1.6
1.6
1.6
1.6
1.6
1.6
1.6
1.6
1.6
1.6
1.6
1.6
1.6
1.6
1.6

Maximum
delay

13
13

5
4
2
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0

Number
times
delay

occurred

1
1

19
1
4

26
5
1
0
0
0
0
0
0
0
0
0
0
0
0

Random number seed = 8
Number of arrivals = 9357
Number of messages completed = 9355



TABLE IV. - PROBABILITIES OF BEING

IN STATE ZERO AND STATE (S+l)

FOR X = 0.9717 AND jit = 1.008

s

3
4

5
6

7

8

9
10
11

12

13
14

15

16
17

18

19

20

Po

0.377555668

.380904197

.381315291

.381363153

.381368398

.381368994

.381369114

.381369114

.381369114

.381369114

.381369114

.381369114

.381369114

.381369114

.381369114

.381369114

.381369114

.381369114

PS+1

0.026689434
.004351790
.000632013
.000081526
.000009239
.000000623

<. 0000001
<. 0000001
<. 0000001
<. 0000001
<. 0000001
<. 0000001
<. 0000001
<. 0000001
<. 0000001
<; 0000001
<4 0000001
<. 0000001



TABLE V. - PROBABILITY S:OF BEING

IN STATE ZERO AND STATE"(S+l)

FOR X = 0.9717 AND ju = 0.625

s

3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

Po

0.197496175
.208861827
.210840284
.211182415
.211238622
.211247265
.211248517
.211248695
.211248755

.211248755

.211248755

.211248755

.211248755

.211248755

.211248755

.211248755

.211248755

.211248755

ps+i
0. 106376171
.027976811
.006570279
.001367569
.000253737
.000042796
.000006914
.000001430

<. 0000001
<. 0000001
<< 0000001
<. 0000001
<. 0000001
<. 0000001
<; 0000001
<. 0000001
<. 0000001
<. 0000001



TABLE VI. - PROBABILITIES Pg+1 FOE VARIOUS

PERCENTAGES OF DEGRADATION FOR

S = 10, X = 0.9717, ju = 1.008,

Degradation
(90)

0
10
20
30
40
50
60
70
80
90
100

V

<0. 0000001
<0. 0000001
.0000006
. 0000092
.0000815
. 0006320
.0043518
.0266894
.1511115
.9292730
1.0000000
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