448 research outputs found

    Single photon production by rephased amplified spontaneous emission

    Get PDF
    The production of single photons using rephased amplified spontaneous emission is examined. This process produces single photons on demand with high efficiency by detecting the spontaneous emission from an atomic ensemble, then applying a population-inverting pulse to rephase the ensemble and produce a photon echo of the spontaneous emission events. The theoretical limits on the efficiency of the production are determined for several variants of the scheme. For an ensemble of uniform optical density, generating the initial spontaneous emission and its echo using transitions of different strengths is shown to produce single photons at 70% efficiency, limited by reabsorption. Tailoring the spatial and spectral density of the atomic ensemble is then shown to prevent reabsorption of the rephased photon, resulting in emission efficiency near unity

    Is magnetic topology important for heating the solar atmosphere?

    Get PDF
    CEP and JT acknowledge the support of STFC through the St Andrew’s SMTG consolidated grant. JEHS is supported by STFC as a PhD student. SJE is supported STFC through the Durham University Impact Acceleration Account.Magnetic fields permeate the entire solar atmosphere weaving an extremely complex pattern on both local and global scales. In order to understand the nature of this tangled web of magnetic fields, its magnetic skeleton, which forms the boundaries between topologically distinct flux domains, may be determined. The magnetic skeleton consists of null points, separatrix surfaces, spines and separators. The skeleton is often used to clearly visualize key elements of the magnetic configuration, but parts of the skeleton are also locations where currents and waves may collect and dissipate. In this review, the nature of the magnetic skeleton on both global and local scales, over solar cycle time scales, is explained. The behaviour of wave pulses in the vicinity of both nulls and separators is discussed and so too is the formation of current layers and reconnection at the same features. Each of these processes leads to heating of the solar atmosphere, but collectively do they provide enough heat, spread over a wide enough area, to explain the energy losses throughout the solar atmosphere? Here, we consider this question for the three different solar regions: Active regions, open-field regions and the quiet Sun. We find that the heating of active regions and open-field regions is highly unlikely to be due to reconnection or wave dissipation at topological features, but it is possible that these may play a role in the heating of the quiet Sun. In active regions, the absence of a complex topology may play an important role in allowing large energies to build up and then, subsequently, be explosively released in the form of a solar flare. Additionally, knowledge of the intricate boundaries of open-field regions (which the magnetic skeleton provides) could be very important in determining the main acceleration mechanism(s) of the solar wind.PostprintPeer reviewe

    The effect of military clothing on gunshot wound patterns in a cadaveric animal limb model

    Get PDF
    The majority of injuries in survivors of gunshot wounds (GSW) are typically to the extremities. Novel wound ballistic research is encouraged to try and capture corporate knowledge on the management of these injuries gained during recent conflicts and understand the wounding patterns seen. With recent work examining the effect of UK military clothing on extremity GSW patterns in a synthetic model, a model with greater biofidelity is needed for ballistic testing. The aim of this study was to assess the effect of UK military clothing on GSW patterns within a cadaveric animal limb model using two types of ammunition commonly used in recent conflicts—7.62 × 39 mm and 5.45 × 39 mm. In total, 24 fallow deer hind limbs were shot, 12 by 7.62 mm projectiles and the remaining 12 shot by 5.45 mm projectiles, further divided into four with no clothing layers (Cnil), four with a single clothing layer (Cmin) and four with maximum clothing layers (Cmax) as worn on active duty by UK military personnel. Limbs were analysed after ballistic impact using contrast CT scanning to obtain measurements of permanent cavity damage, and results were compared using analysis of variance (ANOVA). Results showed significantly different damage measurements within limbs with Cmax for both ammunition types compared with the other clothing states. This may result in GSWs that require more extensive surgical management, and invites further study

    Preliminary effect of projectile yaw on extremity gunshot wounding in a cadaveric animal model: a serendipitous study

    Get PDF
    Gunshot wounding (GSW) is capable of causing devastating tissue injuries by delivering kinetic energy (KE) through the contact surface area of a projectile. The contact surface area can be increased by yaw, deformation and fragmentation, all of which may be caused by any intermediate layers struck by the projectile prior to entering its target. This study aims to describe whether projectile yaw occurring before penetration of a cadaveric animal limb model causes greater damage with or without clothing layers present using 5.45 × 39 mm projectiles. In total, 12 fallow deer hind limbs were shot, further divided into 4 with no clothing layers (Cnil), 4 with a single clothing layer (Cmin) and 4 with maximum clothing layers (Cmax) as worn on active duty by UK military personnel. Contrast computed tomography (CT) of limbs was used to measure permanent cavity size and the results were compared using analysis of variance (ANOVA). No significant differences were found among clothing states for each series of measurements taken, with greater cavity sizes noted in all clothing states. This is in contrast to previous work looking at symmetrically flying projectiles in the same model, where a larger permanent cavity was found only with Cmax present. Projectile yaw is therefore likely to be a key variable with regard to causation of damage within this extremity wound model

    Magnetism in the Brown Dwarf Regime

    Get PDF
    A suite of discoveries in the last two decades demonstrate that we are now at a point where incorporating magnetic behavior is key for advancing our ability to characterize substellar and planetary systems. The next decade heralds the exciting maturation of the now-burgeoning field of brown dwarf magnetism, and investing now in brown dwarf magnetism will provide a key platform for exploring exoplanetary magnetism and habitability beyond the solar system. We anticipate significant discoveries including: the nature of substellar and planetary magnetic dynamos, the characterization of exo-aurora physics and brown dwarf magnetospheric environments, and the role of satellites in manifestations of substellar magnetic activity. These efforts will require significant new observational capabilities at radio and near infrared wavelengths, dedicated long-term monitoring programs, and committed support for the theoretical modeling efforts underpinning the physical processes of the magnetic phenomenaComment: Decadal 2020 science white pape

    Comparison of a new multiplex real-time PCR with the Kato Katz thick smear and copro-antigen ELISA for the detection and differentiation of Taenia spp. in human stools

    Get PDF
    Background : Taenia solium, the cause of neurocysticercosis (NCC), has significant socioeconomic impacts on communities in developing countries. This disease, along with taeniasis is estimated to infect 2.5 to 5 million people globally. Control of T. solium NCC necessitates accurate diagnosis and treatment of T. solium taeniasis carriers. In areas where all three species of Taenia tapeworms (T. solium, Taenia saginata and Taenia asiatica) occur sympatrically, conventional microscope-and copro-antigen based diagnostic methods are unable to distinguish between these three Taenia species. Molecular diagnostic tools have been developed to overcome this limitation; however, conventional PCR-based techniques remain unsuitable for large-scale deployment in community-based surveys. Moreover, a real-time PCR (qPCR) for the discrimination of all three species of Taenia in human stool does not exist. This study describes the development and validation of a new triplex Taq-Man probe-based qPCR for the detection and discrimination of all three Taenia human tapeworms in human stools collected from communities in the Central Highlands of Vietnam. The diagnostic characteristics of the test are compared with conventional Kato Katz (KK) thick smear and copro-antigen ELISA (cAgELISA) method utilizing fecal samples from a community based cross-sectional study. Using this new multiplex real-time PCR we provide an estimate of the true prevalence of taeniasis in the source population for the community based cross-sectional study. Methodology/Principal findings : Primers and TaqMan probes for the specific amplification of T. solium, T. saginata and T. asiatica were designed and successfully optimized to target the internal transcribed spacer I (ITS-1) gene of T. solium and the cytochrome oxidase subunit I (COX-1) gene of T. saginata and T. asiatica. The newly designed triplex qPCR (T3qPCR) was compared to KK and cAgELISA for the detection of Taenia eggs in stool samples collected from 342 individuals in Dak Lak province, Central Highlands of Vietnam. The overall apparent prevalence of taeniasis in Dak Lak province was 6.72% (95% confidence interval (CI) [3.94-9.50]) in which T. solium accounted for 1.17% (95% CI [0.37-3.17]), according to the T3qPCR. There was sympatric presence of T. solium, T. saginata and T. asiatica. The T3qPCR proved superior to KK and cAgELISA for the detection and differentiation of Taenia species in human feces. Diagnostic sensitivities of 0.94 (95% credible interval (CrI) [0.88-0.98]), 0.82 (95% CrI [0.58-0.95]) and 0.52 (95% CrI [0.07-0.94]), and diagnostic specificities of 0.98 (95% CrI [0.94-1.00]), 0.91 (95% CrI [0.85-0.96]) and 0.99 (95% CrI [0.96-1.00]) were estimated for the diagnosis of taeniasis for the T3qPCR, cAgELISA and KK thick smear in this study, respectively. Conclusions : T3qPCR is not only superior to the KK thick smear and cAgELISA in terms of diagnostic sensitivity and specificity, but it also has the advantage of discriminating between species of Taenia eggs in stools. Application of this newly developed T3qPCR has identified the existence of all three human Taenia tapeworms in Dak Lak province and proves for the first time, the existence of T. asiatica in the Central Highlands and the south of Vietnam

    Ballistic research techniques: visualizing gunshot wounding patterns

    Get PDF
    There are difficulties associated with mapping gunshot wound (GSW) patterns within opaque models. Depending on the damage measurement parameters required, there are multiple techniques that can provide methods of “seeing” the GSW pattern within an opaque model. The aim of this paper was to test several of these techniques within a cadaveric animal limb model to determine the most effective. The techniques of interest were flash X-ray, ultrasound, physical dissection, and computed-tomography (CT). Fallow deer hind limbs were chosen for the model with four limbs used for each technique tested. Quarantined 7.62 × 39 mm ammunition was used for each shot, and each limb was only shot once, on an outdoor range with shots impacting at muzzle velocity. Flash X-ray provided evidence of yaw within the limb during the projectile’s flight; ultrasound though able to visualise the GSW track, was too subjective and was abandoned; dissection proved too unreliable due to the tissue being cadaveric so also too subjective; and lastly, CT with contrast provided excellent imaging in multiple viewing planes and 3D image reconstruction; this allowed versatile measurement of the GSW pattern to collect dimensions of damage as required. Of the different techniques examined in this study, CT with contrast proved the most effective to allow precise GSW pattern analysis within a cadaveric animal limb model. These findings may be beneficial to others wishing to undertake further ballistic study both within clinical and forensic fields

    Herbivore defence compounds occur in pollen and reduce bumblebee colony fitness

    Get PDF
    Herbivory defence chemicals in plants can affect higher trophic levels such as predators and parasitoids, but the impact on pollinators has been overlooked. We show that defensive plant chemicals can damage pollinator fitness when expressed in pollen. Crop lupins (Lupinus species from Europe and South America) accumulate toxic quinolizidine alkaloids in vegetative tissues, conferring resistance to herbivorous pests such as aphids. We identified the alkaloid lupanine and its derivatives in lupin pollen, and then provided this compound at ecologically-relevant concentrations to queenless microcolonies of bumblebees (Bombus terrestris) in their pollen to determine how foraging on these crops may impact bee colony health and fitness. Fewer males were produced by microcolonies provided with lupanine-treated pollen and they were significantly smaller than controls. This impact on males was not linked to preference as workers willingly fed lupanine-treated pollen to larvae, even though it was deleterious to colony health. Agricultural systems comprising large monocultures of crops bred for herbivore resistance can expose generalist pollinators to deleterious levels of plant compounds, and the broader environmental impacts of crop resistance must thus be considered
    corecore