313 research outputs found

    Susceptibility scoring in family-based association testing

    Get PDF
    BACKGROUND: Family-based association testing is an important part of genetic epidemiology. Tests are available to include multiple siblings, unaffected offspring, and to adjust for environmental covariates. We explore a susceptibility residual method of adjustment for covariates. RESULTS: Through simulation, we show that environmental adjustments that down-weight persons who are "destined" to be affected decrease the power to detect genetic association. We used the residual adjusted method on the Framingham Heart Study offspring data, provided for Genetic Analysis Workshop 13, and got mixed results. CONCLUSION: When the genetic effect and environmental effects are independent, a susceptibility residual method of adjustment for environmental covariates reduces the power of the association test. Further study is necessary to determine if residual adjustment is appropriate in more complex disease models

    Analysis of gene × environment interactions in sibships using mixed models

    Get PDF
    BACKGROUND: Gene × environment models are widely used to assess genetic and environmental risks and their association with a phenotype of interest for many complex diseases. Mixed generalized linear models were used to assess gene × environment interactions with respect to systolic blood pressure on sibships adjusting for repeated measures and hierarchical nesting structures. A data set containing 410 sibships from the Framingham Heart Study offspring cohort (part of the Genetic Analysis Workshop 13 data) was used for all analyses. Three mixed gene × environment models, all adjusting for repeated measurement and varying levels of nesting, were compared for precision of estimates: 1) all sibships with adjustment for two levels of nesting (sibs within sibships and sibs within pedigrees), 2) all sibships with adjustment for one level of nesting (sibs within sibships), and 3) 100 data sets containing random draws of one sibship per extended pedigree adjusting for one level of nesting. RESULTS: The main effects were: gender, baseline age, body mass index (BMI), hypertensive treatment, cigarettes per day, grams of alcohol per day, and marker GATA48G07A. The interaction fixed effects were: baseline age by gender, baseline age by cigarettes per day, baseline age by hypertensive treatment, baseline age by BMI, hypertensive treatment by BMI, and baseline age by marker GATA48G07A. The estimates for all three nesting techniques were not widely discrepant, but precision of estimates and determination of significant effects did change with the change in adjustment for nesting. CONCLUSION: Our results show the importance of the adjustment for all levels of hierarchical nesting of sibs in the presence of repeated measures

    Potential of herbariomics for studying repetitive DNA in angiosperms

    Get PDF
    Repetitive DNA has an important role in angiosperm genomes and is relevant to our understanding of genome size variation, polyploidisation and genome dynamics more broadly. Much recent work has harnessed the power of high-throughput sequencing (HTS) technologies to advance the study of repetitive DNA in flowering plants. Herbarium collections provide a useful historical perspective on genome diversity through time, but their value for the study of repetitive DNA has not yet been explored. We propose that herbarium DNA may prove as useful for studies of repetitive DNA content as it has for reconstructed organellar genomes and low-copy nuclear sequence data. Here we present a case study in the tobacco genus (Nicotiana; Solanaceae), showing that herbarium specimens can provide accurate estimates of the repetitive content of angiosperm genomes by direct comparison with recently-collected material. We show a strong correlation between the abundance of repeat clusters, e.g., different types of transposable elements and satellite DNA, in herbarium collections versus recent material for four sets of Nicotiana taxa. These results suggest that herbarium specimen genome sequencing (herbariomics) holds promise for both repeat discovery and analyses that aim to investigate the role of repetitive DNAs in genomic evolution, particularly genome size evolution and/or contributions of repeats to the regulation of gene space

    Functional network reorganization in motor cortex can be explained by reward-modulated Hebbian learning

    Get PDF
    Abstract The control of neuroprosthetic devices from the activity of motor cortex neurons benefits from learning effects where the function of these neurons is adapted to the control task. It was recently shown that tuning properties of neurons in monkey motor cortex are adapted selectively in order to compensate for an erroneous interpretation of their activity. In particular, it was shown that the tuning curves of those neurons whose preferred directions had been misinterpreted changed more than those of other neurons. In this article, we show that the experimentally observed self-tuning properties of the system can be explained on the basis of a simple learning rule. This learning rule utilizes neuronal noise for exploration and performs Hebbian weight updates that are modulated by a global reward signal. In contrast to most previously proposed reward-modulated Hebbian learning rules, this rule does not require extraneous knowledge about what is noise and what is signal. The learning rule is able to optimize the performance of the model system within biologically realistic periods of time and under high noise levels. When the neuronal noise is fitted to experimental data, the model produces learning effects similar to those found in monkey experiments

    Relative climatic effects of landcover change and elevated carbon dioxide combined with aerosols: A comparison of model results and observations

    Get PDF
    In this study we examine the possibility that the historical total of human landcover changes have had a comparable effect on climate to that of historical increases in CO2 and aerosols. We compared results from two coupled climate model simulations which investigated transient climate changes produced by observed historical changes of CO2 combined with sulfate aerosol forcing with two other climate model simulations that examined the equilibrium climatic effects of currently observed changes in landcover from its natural state. We found that simulated, near-surface temperature anomalies due to transient increases in atmospheric CO2 combined with aerosols at the level currently observed are of similar amplitude as simulated temperature anomalies due to the direct and remote (nonlocal) equilibrium effects of historical anthropogenic landcover change in all models. Both effects are of comparable amplitude to observed temperature trends in the past 2 decades, the period of largest global surface warming. These results provide evidence for a confounding influence on surface temperatures and may be an indication that the problem of detection of the radiative warming effect of increased CO2 in the observational record may be more complicated than previously appreciated

    Population activity structure of excitatory and inhibitory neurons

    Get PDF
    Many studies use population analysis approaches, such as dimensionality reduction, to characterize the activity of large groups of neurons. To date, these methods have treated each neuron equally, without taking into account whether neurons are excitatory or inhibitory. We studied population activity structure as a function of neuron type by applying factor analysis to spontaneous activity from spiking networks with balanced excitation and inhibition. Throughout the study, we characterized population activity structure by measuring its dimensionality and the percentage of overall activity variance that is shared among neurons. First, by sampling only excitatory or only inhibitory neurons, we found that the activity structures of these two populations in balanced networks are measurably different. We also found that the population activity structure is dependent on the ratio of excitatory to inhibitory neurons sampled. Finally we classified neurons from extracellular recordings in the primary visual cortex of anesthetized macaques as putative excitatory or inhibitory using waveform classification, and found similarities with the neuron type-specific population activity structure of a balanced network with excitatory clustering. These results imply that knowledge of neuron type is important, and allows for stronger statistical tests, when interpreting population activity structure

    Detection of Target ssDNA Using a Microfabricated Hall Magnetometer with Correlated Optical Readout

    Get PDF
    Sensing biological agents at the genomic level, while enhancing the response time for biodetection over commonly used, optics-based techniques such as nucleic acid microarrays or enzyme-linked immunosorbent assays (ELISAs), is an important criterion for new biosensors. Here, we describe the successful detection of a 35-base, single-strand nucleic acid target by Hall-based magnetic transduction as a mimic for pathogenic DNA target detection. The detection platform has low background, large signal amplification following target binding and can discriminate a single, 350 nm superparamagnetic bead labeled with DNA. Detection of the target sequence was demonstrated at 364 pM (<2 target DNA strands per bead) target DNA in the presence of 36 μM nontarget (noncomplementary) DNA (<10 ppm target DNA) using optical microscopy detection on a GaAs Hall mimic. The use of Hall magnetometers as magnetic transduction biosensors holds promise for multiplexing applications that can greatly improve point-of-care (POC) diagnostics and subsequent medical care

    Investigating Europa’s Habitability with the Europa Clipper

    Get PDF
    The habitability of Europa is a property within a system, which is driven by a multitude of physical and chemical processes and is defined by many interdependent parameters, so that its full characterization requires collaborative investigation. To explore Europa as an integrated system to yield a complete picture of its habitability, the Europa Clipper mission has three primary science objectives: (1) characterize the ice shell and ocean including their heterogeneity, properties, and the nature of surface–ice–ocean exchange; (2) characterize Europa’s composition including any non-ice materials on the surface and in the atmosphere, and any carbon-containing compounds; and (3) characterize Europa’s geology including surface features and localities of high science interest. The mission will also address several cross-cutting science topics including the search for any current or recent activity in the form of thermal anomalies and plumes, performing geodetic and radiation measurements, and assessing high-resolution, co-located observations at select sites to provide reconnaissance for a potential future landed mission. Synthesizing the mission’s science measurements, as well as incorporating remote observations by Earth-based observatories, the James Webb Space Telescope, and other space-based resources, to constrain Europa’s habitability, is a complex task and is guided by the mission’s Habitability Assessment Board (HAB)

    Effect of β2-adrenergic receptor stimulation on lung fluid in stable heart failure patients

    Get PDF
    Introduction: The purpose of this study was to determine 1) if stable heart-failure patients with reduced ejection fraction (HFrEF) have elevated extravascular lung water (EVLW) versus healthy control subjects, and 2) the effect of acute β2AR agonist inhalation on lung fluid balance. Methods: Twenty-two stable HFrEF patients and 18 age- and sex-matched healthy subjects were studied. Lung diffusing capacity for carbon monoxide (DLCO), alveolar-capillary conductance (DmCO), pulmonary capillary blood volume (Vc) (via rebreathe) and lung tissue volume (Vtis) (via computed tomography) were assessed before and within 30 min of administration of nebulized albuterol. EVLW was derived as Vtis – Vc. Results: Pre-albuterol, Vtis and EVLW were greater in HFrEF vs. control (998 ± 200 vs. 884 ± 123 ml, P = 0.041; 943 ± 202 vs. 802 ± 133 ml, P = 0.015, respectively). Albuterol decreased Vtis and EVLW in HFrEF (−4.6 ± 7.8%, P = 0.010; −4.6 ± 8.8%, P = 0.018) and control (−2.8 ± 4.9%, P = 0.029; −3.0 ± 5.7%, P = 0.045). There was an inverse relationship between pre-albuterol values and the pre- to post-albuterol change for EVLW (r2 = −0.264, P = 0.015) and DmCO (r2 = −0.343, P = 0.004) in HFrEF only. Conclusion: Lung fluid is elevated in stable HFrEF patients relative to healthy subjects. Stimulation of the β2ARs may cause fluid removal in HFrEF, especially in patients who exhibit greater evidence for increased lung water at baseline

    Representation of Time-Varying Stimuli by a Network Exhibiting Oscillations on a Faster Time Scale

    Get PDF
    Sensory processing is associated with gamma frequency oscillations (30–80 Hz) in sensory cortices. This raises the question whether gamma oscillations can be directly involved in the representation of time-varying stimuli, including stimuli whose time scale is longer than a gamma cycle. We are interested in the ability of the system to reliably distinguish different stimuli while being robust to stimulus variations such as uniform time-warp. We address this issue with a dynamical model of spiking neurons and study the response to an asymmetric sawtooth input current over a range of shape parameters. These parameters describe how fast the input current rises and falls in time. Our network consists of inhibitory and excitatory populations that are sufficient for generating oscillations in the gamma range. The oscillations period is about one-third of the stimulus duration. Embedded in this network is a subpopulation of excitatory cells that respond to the sawtooth stimulus and a subpopulation of cells that respond to an onset cue. The intrinsic gamma oscillations generate a temporally sparse code for the external stimuli. In this code, an excitatory cell may fire a single spike during a gamma cycle, depending on its tuning properties and on the temporal structure of the specific input; the identity of the stimulus is coded by the list of excitatory cells that fire during each cycle. We quantify the properties of this representation in a series of simulations and show that the sparseness of the code makes it robust to uniform warping of the time scale. We find that resetting of the oscillation phase at stimulus onset is important for a reliable representation of the stimulus and that there is a tradeoff between the resolution of the neural representation of the stimulus and robustness to time-warp. Author Summary Sensory processing of time-varying stimuli, such as speech, is associated with high-frequency oscillatory cortical activity, the functional significance of which is still unknown. One possibility is that the oscillations are part of a stimulus-encoding mechanism. Here, we investigate a computational model of such a mechanism, a spiking neuronal network whose intrinsic oscillations interact with external input (waveforms simulating short speech segments in a single acoustic frequency band) to encode stimuli that extend over a time interval longer than the oscillation's period. The network implements a temporally sparse encoding, whose robustness to time warping and neuronal noise we quantify. To our knowledge, this study is the first to demonstrate that a biophysically plausible model of oscillations occurring in the processing of auditory input may generate a representation of signals that span multiple oscillation cycles.National Science Foundation (DMS-0211505); Burroughs Wellcome Fund; U.S. Air Force Office of Scientific Researc
    corecore