693 research outputs found

    Crowding-induced hybridization of single DNA hairpins

    Get PDF
    It is clear that a crowded environment influences the structure, dynamics, and interactions of biological molecules, but the complexity of this phenomenon demands the development of new experimental and theoretical approaches. Here we use two complementary single-molecule FRET techniques to show that the kinetics of DNA base pairing and unpairing, which are fundamental to both the biological role of DNA and its technological applications, are strongly modulated by a crowded environment. We directly observed single DNA hairpins, which are excellent model systems for studying hybridization, either freely diffusing in solution or immobilized on a surface under crowding conditions. The hairpins followed two-state folding dynamics with a closing rate increasing by 4-fold and the opening rate decreasing 2-fold, for only modest concentrations of crowder [10% (w/w) polyethylene glycol (PEG)]. These experiments serve both to unambiguously highlight the impact of a crowded environment on a fundamental biological process, DNA base pairing, and to illustrate the benefits of single-molecule approaches to probing the structure and dynamics of complex biomolecular systems

    Proposing a Metacurriculum for Occupational Therapy Education in 2025 and Beyond

    Get PDF
    The American healthcare system has undergone significant changes in the past few years due to government and corporate-level changes. As healthcare requirements continue to shift, occupational therapists must continue to assert their role or risk losing relevancy. Therefore, educational programs must prepare students to meet the populations’ shifting healthcare needs through agile curricula which focus less on isolated skills and more on broad areas of impact. To determine essential content comprising a ‘metacurriculum’ for occupational therapy education of the future, nine articles were analyzed using Bloom’s Taxonomy (revised) to code each document into knowledge, skills, and behaviors. Major themes were identified across all documents. Through the coding analysis eleven themes were identified: population health, developing life-long learners, advocacy (at government and individual level), interprofessional collaboration, generation of evidence and translational science, diversity and inclusion, psychosocial concerns, aging, wellbeing and preventative care, contemporary issues and informatics. The themes can serve as an outline for academic programs to continue to evolve their curricula to ensure that practitioners are fully prepared to address the global issues that will manifest during their careers in occupational therapy

    A guide to small fluorescent probes for single-molecule biophysics

    Get PDF
    The explosive growth of single-molecule techniques is transforming our understanding of biology, helping to develop new physics inspired by emergent biological processes, and leading to emerging areas of nanotechnology. Key biological and chemical processes can now be probed with new levels of detail, one molecule at a time, from the nanoscopic dynamics of nature's molecular machines to an ever-expanding range of exciting applications across multiple length and time scales. Their common feature is an ability to render the underlying distribution of molecular properties that ensemble averaging masks and to reveal new insights into complex systems containing spatial and temporal heterogeneity. Small fluorescent probes are among the most adaptable and versatile for single-molecule sensing applications because they provide high signal-to-noise ratios combined with excellent specificity of labeling when chemically attached to target biomolecules or embedded within a host material. In this review, we examine recent advances in probe designs, their utility, and applications and provide a practical guide to their use, focusing on the single-molecule detection of nucleic acids, proteins, carbohydrates, and membrane dynamics. We also present key challenges that must be overcome to perform successful single-molecule experiments, including probe conjugation strategies, identify tradeoffs and limitations for each probe design, showcase emerging applications, and discuss exciting future directions for the community

    Recovery from disturbance requires resynchronization of ecosystem nutrient cycles

    Get PDF
    Nitrogen (N) and phosphorus (P) are tightly cycled in most terrestrial ecosystems, with plant uptake more than 10 times higher than the rate of supply from deposition and weathering. This near-total dependence on recycled nutrients and the stoichiometric constraints on resource use by plants and microbes mean that the two cycles have to be synchronized such that the ratio of N:P in plant uptake, litterfall, and net mineralization are nearly the same. Disturbance can disrupt this synchronization if there is a disproportionate loss of one nutrient relative to the other. We model the resynchronization of N and P cycles following harvest of a northern hardwood forest. In our simulations, nutrient loss in the harvest is small relative to postharvest losses. The low N:P ratio of harvest residue results in a preferential release of P and retention of N. The P release is in excess of plant requirements and P is lost from the active ecosystem cycle through secondary mineral formation and leaching early in succession. Because external P inputs are small, the resynchronization of the N and P cycles later in succession is achieved by a commensurate loss of N. Through succession, the ecosystem undergoes alternating periods of N limitation, then P limitation, and eventually co-limitation as the two cycles resynchronize. However, our simulations indicate that the overall rate and extent of recovery is limited by P unless a mechanism exists either to prevent the P loss early in succession (e.g., P sequestration not stoichiometrically constrained by N) or to increase the P supply to the ecosystem later in succession (e.g., biologically enhanced weathering). Our model provides a heuristic perspective from which to assess the resynchronization among tightly cycled nutrients and the effect of that resynchronization on recovery of ecosystems from disturbance

    Surface Charge Control of Quantum Dot Blinking

    Get PDF
    A characteristic property of colloidal semiconductor nanocrystal quantum dots (QDs) is their emission intermittency. Although a unifying theory of QD photoprocesses remains elusive, the importance of charged states is clear. We now report a new approach to directly study the role of surface charge on QD emission by adding metal ions to individual, core-only QDs immobilized in aqueous solution in an agarose gel. The CdTe QDs show very stable emission in the absence of metal ions but a dramatic and reversible increase in blinking due to the presence of trivalent metal ions. Our results support a charge-separation model, in which the major blinking pathway is the surface trapping of electrons; transiently bound metal ions close to the QD surface enhance this process

    Radiation reaction and the self-force for a point mass in general relativity

    Full text link
    A point particle of mass m moving on a geodesic creates a perturbation h, of the spacetime metric g, that diverges at the particle. Simple expressions are given for the singular m/r part of h and its quadrupole distortion caused by the spacetime. Subtracting these from h leaves a remainder h^R that is C^1. The self-force on the particle from its own gravitational field corrects the worldline at O(m) to be a geodesic of g+h^R. For the case that the particle is a small non-rotating black hole, an approximate solution to the Einstein equations is given with error of O(m^2) as m approaches 0.Comment: 4 pages, RevTe

    Amyloid-β oligomerization monitored by single-molecule stepwise photobleaching

    Get PDF
    A major hallmark of Alzheimer’s disease is the misfolding and aggregation of the amyloid- β peptide (Aβ). While early research pointed towards large fibrillar- and plaque-like aggregates as being the most toxic species, recent evidence now implicates small soluble Aβ oligomers as being orders of magnitude more harmful. Techniques capable of characterizing oligomer stoichiometry and assembly are thus critical for a deeper understanding of the earliest stages of neurodegeneration and for rationally testing next-generation oligomer inhibitors. While the fluorescence response of extrinsic fluorescent probes such as Thioflavin-T have become workhorse tools for characterizing large Aβ aggregates in solution, it is widely accepted that these methods suffer from many important drawbacks, including an insensitivity to oligomeric species. Here, we integrate several biophysics techniques to gain new insight into oligomer formation at the single-molecule level. We showcase single-molecule stepwise photobleaching of fluorescent dye molecules as a powerful method to bypass many of the traditional limitations, and provide a step-by-step guide to implementing the technique in vitro. By collecting fluorescence emission from single Aβ(1–42) peptides labelled at the N-terminal position with HiLyte Fluor 555 via wide-field total internal reflection fluorescence (TIRF) imaging, we demonstrate how to characterize the number of peptides per single immobile oligomer and reveal heterogeneity within sample populations. Importantly, fluorescence emerging from Aβ oligomers cannot be easily investigated using diffraction-limited optical microscopy tools. To assay oligomer activity, we also demonstrate the implementation of another biophysical method involving the ratiometric imaging of Fura-2-AM loaded cells which quantifies the rate of oligomer-induced dysregulation of intracellular Ca2+ homeostasis. We anticipate that the integrated single-molecule biophysics approaches highlighted here will develop further and in principle may be extended to the investigation of other protein aggregation systems under controlled experimental conditions

    Use of injectable hormonal contraception and women’s risk of herpes simplex virus type 2 acquisition: a prospective study of couples in Rakai, Uganda

    Get PDF
    Background The injectable hormonal contraceptive depo-medroxyprogesterone acetate (DMPA) has been associated with increased risk of HIV acquisition, but fi ndings are inconsistent. Whether DMPA increases the risk of other sexually transmitted viral infections is unknown. We assessed the association between DMPA use and incident herpes simplex virus type 2 (HSV2) infection in women. Methods In this prospective study, we enrolled HIV-negative and HSV2-negative women aged 15–49 years whose HIV-negative male partners were concurrently enrolled in a randomised trial of male circumcision in Rakai, Uganda. We excluded women if either they or their male partners HIV seroconverted. The primary outcome was HSV2 seroconversion, assessed annually. The male circumcision trial was registered with ClinicalTrials.gov, number NCT00425984. Findings Between Aug 11, 2003, and July 6, 2006, we enrolled 682 women in this study. We noted HSV2 seroconversions in 70 (10%) women. Incidence was 13·5 per 100 person-years in women consistently using DMPA (nine incident infections per 66·5 person-years), 4·3 per 100 person-years in pregnant women who were not using hormonal contraception (18 incident infections per 423·5 person-years), and 6·6 per 100 person-years in women who were neither pregnant nor using hormonal contraception (35 incident infections per 529·5 person-years). Women consistently using DMPA had an adjusted hazard ratio for HSV2 seroconversion of 2·26 (95% CI 1·09–4·69; p=0·029) compared with women who were neither pregnant nor using hormonal contraception. Of 132 women with HSV2-seropositive partners, seroconversion was 36·4 per 100 person-years in consistent DMPA users (four incident infections per 11 person-years) and 10·7 per 100 person-years in women who were neither pregnant nor using hormonal contraception (11 incident infections per 103 person-years; adjusted hazard ratio 6·23, 95% CI 1·49–26·3; p=0·012). Interpretation Consistent DMPA use might increase risk of HSV2 seroconversion; however, study power was low. These fi ndings should be assessed in larger populations with more frequent follow-up than in this study, and other contraceptive methods should also be assessed. Access to a wide range of highly eff ective contraceptive methods is needed for women, particularly in sub-Saharan Africa

    Kepler-432: a red giant interacting with one of its two long period giant planets

    Get PDF
    We report the discovery of Kepler-432b, a giant planet (Mb=5.410.18+0.32MJup,Rb=1.1450.039+0.036RJupM_b = 5.41^{+0.32}_{-0.18} M_{\rm Jup}, R_b = 1.145^{+0.036}_{-0.039} R_{\rm Jup}) transiting an evolved star (M=1.320.07+0.10M,R=4.060.08+0.12R)(M_\star = 1.32^{+0.10}_{-0.07} M_\odot, R_\star = 4.06^{+0.12}_{-0.08} R_\odot) with an orbital period of Pb=52.5011290.000053+0.000067P_b = 52.501129^{+0.000067}_{-0.000053} days. Radial velocities (RVs) reveal that Kepler-432b orbits its parent star with an eccentricity of e=0.51340.0089+0.0098e = 0.5134^{+0.0098}_{-0.0089}, which we also measure independently with asterodensity profiling (AP; e=0.5070.114+0.039e=0.507^{+0.039}_{-0.114}), thereby confirming the validity of AP on this particular evolved star. The well-determined planetary properties and unusually large mass also make this planet an important benchmark for theoretical models of super-Jupiter formation. Long-term RV monitoring detected the presence of a non-transiting outer planet (Kepler-432c; Mcsinic=2.430.24+0.22MJup,Pc=406.22.5+3.9M_c \sin{i_c} = 2.43^{+0.22}_{-0.24} M_{\rm Jup}, P_c = 406.2^{+3.9}_{-2.5} days), and adaptive optics imaging revealed a nearby (0\farcs87), faint companion (Kepler-432B) that is a physically bound M dwarf. The host star exhibits high signal-to-noise asteroseismic oscillations, which enable precise measurements of the stellar mass, radius and age. Analysis of the rotational splitting of the oscillation modes additionally reveals the stellar spin axis to be nearly edge-on, which suggests that the stellar spin is likely well-aligned with the orbit of the transiting planet. Despite its long period, the obliquity of the 52.5-day orbit may have been shaped by star-planet interaction in a manner similar to hot Jupiter systems, and we present observational and theoretical evidence to support this scenario. Finally, as a short-period outlier among giant planets orbiting giant stars, study of Kepler-432b may help explain the distribution of massive planets orbiting giant stars interior to 1 AU.Comment: 22 pages, 19 figures, 5 tables. Accepted to ApJ on Jan 24, 2015 (submitted Nov 11, 2014). Updated with minor changes to match published versio
    corecore