1,941 research outputs found

    A Survey of Genomic Properties for the Detection of Regulatory Polymorphisms

    Get PDF
    Advances in the computational identification of functional noncoding polymorphisms will aid in cataloging novel determinants of health and identifying genetic variants that explain human evolution. To date, however, the development and evaluation of such techniques has been limited by the availability of known regulatory polymorphisms. We have attempted to address this by assembling, from the literature, a computationally tractable set of regulatory polymorphisms within the ORegAnno database (http://www.oreganno.org). We have further used 104 regulatory single-nucleotide polymorphisms from this set and 951 polymorphisms of unknown function, from 2-kb and 152-bp noncoding upstream regions of genes, to investigate the discriminatory potential of 23 properties related to gene regulation and population genetics. Among the most important properties detected in this region are distance to transcription start site, local repetitive content, sequence conservation, minor and derived allele frequencies, and presence of a CpG island. We further used the entire set of properties to evaluate their collective performance in detecting regulatory polymorphisms. Using a 10-fold cross-validation approach, we were able to achieve a sensitivity and specificity of 0.82 and 0.71, respectively, and we show that this performance is strongly influenced by the distance to the transcription start site

    BUMPER v1.0: a Bayesian user-friendly model for palaeo-environmental reconstruction

    Get PDF
    We describe the Bayesian user-friendly model for palaeo-environmental reconstruction (BUMPER), a Bayesian transfer function for inferring past climate and other environmental variables from microfossil assemblages. BUMPER is fully self-calibrating, straightforward to apply, and computationally fast, requiring ~2 s to build a 100-taxon model from a 100-site training set on a standard personal computer. We apply the model’s probabilistic framework to generate thousands of artificial training sets under ideal assumptions.We then use these to demonstrate the sensitivity of reconstructions to the characteristics of the training set, considering assemblage richness, taxon tolerances, and the number of training sites. We find that a useful guideline for the size of a training set is to provide, on average, at least 10 samples of each taxon. We demonstrate general applicability to real data, considering three different organism types (chironomids, diatoms, pollen) and different reconstructed variables. An identically configured model is used in each application, the only change being the input files that provide the training-set environment and taxon-count data. The performance of BUMPER is shown to be comparable with weighted average partial least squares (WAPLS) in each case. Additional artificial datasets are constructed with similar characteristics to the real data, and these are used to explore the reasons for the differing performances of the different training sets

    Association of Blood Biomarkers With Acute Sport-Related Concussion in Collegiate Athletes: Findings From the NCAA and Department of Defense CARE Consortium

    Get PDF
    Importance: There is potential scientific and clinical value in validation of objective biomarkers for sport-related concussion (SRC). Objective: To investigate the association of acute-phase blood biomarker levels with SRC in collegiate athletes. Design, Setting, and Participants: This multicenter, prospective, case-control study was conducted by the National Collegiate Athletic Association (NCAA) and the US Department of Defense Concussion Assessment, Research, and Education (CARE) Consortium from February 20, 2015, to May 31, 2018, at 6 CARE Advanced Research Core sites. A total of 504 collegiate athletes with concussion, contact sport control athletes, and non-contact sport control athletes completed clinical testing and blood collection at preseason baseline, the acute postinjury period, 24 to 48 hours after injury, the point of reporting being asymptomatic, and 7 days after return to play. Data analysis was conducted from March 1 to November 30, 2019. Main Outcomes and Measures: Glial fibrillary acidic protein (GFAP), ubiquitin C-terminal hydrolase-L1 (UCH-L1), neurofilament light chain, and tau were quantified using the Quanterix Simoa multiplex assay. Clinical outcome measures included the Sport Concussion Assessment Tool-Third Edition (SCAT-3) symptom evaluation, Standardized Assessment of Concussion, Balance Error Scoring System, and Brief Symptom Inventory 18. Results: A total of 264 athletes with concussion (mean [SD] age, 19.08 [1.24] years; 211 [79.9%] male), 138 contact sport controls (mean [SD] age, 19.03 [1.27] years; 107 [77.5%] male), and 102 non-contact sport controls (mean [SD] age, 19.39 [1.25] years; 82 [80.4%] male) were included in the study. Athletes with concussion had significant elevation in GFAP (mean difference, 0.430 pg/mL; 95% CI, 0.339-0.521 pg/mL; P < .001), UCH-L1 (mean difference, 0.449 pg/mL; 95% CI, 0.167-0.732 pg/mL; P < .001), and tau levels (mean difference, 0.221 pg/mL; 95% CI, 0.046-0.396 pg/mL; P = .004) at the acute postinjury time point compared with preseason baseline. Longitudinally, a significant interaction (group × visit) was found for GFAP (F7,1507.36 = 16.18, P < .001), UCH-L1 (F7,1153.09 = 5.71, P < .001), and tau (F7,1480.55 = 6.81, P < .001); the interaction for neurofilament light chain was not significant (F7,1506.90 = 1.33, P = .23). The area under the curve for the combination of GFAP and UCH-L1 in differentiating athletes with concussion from contact sport controls at the acute postinjury period was 0.71 (95% CI, 0.64-0.78; P < .001); the acute postinjury area under the curve for all 4 biomarkers combined was 0.72 (95% CI, 0.65-0.79; P < .001). Beyond SCAT-3 symptom score, GFAP at the acute postinjury time point was associated with the classification of athletes with concussion from contact controls (β = 12.298; 95% CI, 2.776-54.481; P = .001) and non-contact sport controls (β = 5.438; 95% CI, 1.676-17.645; P = .005). Athletes with concussion with loss of consciousness or posttraumatic amnesia had significantly higher levels of GFAP than athletes with concussion with neither loss of consciousness nor posttraumatic amnesia at the acute postinjury time point (mean difference, 0.583 pg/mL; 95% CI, 0.369-0.797 pg/mL; P < .001). Conclusions and Relevance: The results suggest that blood biomarkers can be used as research tools to inform the underlying pathophysiological mechanism of concussion and provide additional support for future studies to optimize and validate biomarkers for potential clinical use in SRC

    TIGIT Marks Exhausted T Cells, Correlates with Disease Progression, and Serves as a Target for Immune Restoration in HIV and SIV Infection.

    Get PDF
    HIV infection induces phenotypic and functional changes to CD8+ T cells defined by the coordinated upregulation of a series of negative checkpoint receptors that eventually result in T cell exhaustion and failure to control viral replication. We report that effector CD8+ T cells during HIV infection in blood and SIV infection in lymphoid tissue exhibit higher levels of the negative checkpoint receptor TIGIT. Increased frequencies of TIGIT+ and TIGIT+ PD-1+ CD8+ T cells correlated with parameters of HIV and SIV disease progression. TIGIT remained elevated despite viral suppression in those with either pharmacological antiretroviral control or immunologically in elite controllers. HIV and SIV-specific CD8+ T cells were dysfunctional and expressed high levels of TIGIT and PD-1. Ex-vivo single or combinational antibody blockade of TIGIT and/or PD-L1 restored viral-specific CD8+ T cell effector responses. The frequency of TIGIT+ CD4+ T cells correlated with the CD4+ T cell total HIV DNA. These findings identify TIGIT as a novel marker of dysfunctional HIV-specific T cells and suggest TIGIT along with other checkpoint receptors may be novel curative HIV targets to reverse T cell exhaustion

    Lung metastasis 21 years after initial diagnosis of osteosarcoma: a case report

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>To the best of our knowledge, this case report describes the longest disease-free interval between primary diagnosis and metastatic recurrence of an osteosarcoma.</p> <p>Case presentation</p> <p>A 35-year-old Caucasian American man presented with asymptomatic lung metastases 21 years after being diagnosed and treated for lower extremity osteosarcoma. He underwent curative lung resection, but 2 years thereafter developed metastatic disease in the scapula and tibia and, after resection and chemotherapy, is in remission 1 year later.</p> <p>Conclusion</p> <p>This case highlights the importance of long follow-up periods and continued surveillance of osteosarcoma patients after initial curative treatment.</p

    Sexually dimorphic RB inactivation underlies mesenchymal glioblastoma prevalence in males

    Get PDF
    The prevalence of brain tumors in males is common but unexplained. While sex differences in disease are typically mediated through acute sex hormone actions, sex-specific differences in brain tumor rates are comparable at all ages, suggesting that factors other than sex hormones underlie this discrepancy. We found that mesenchymal glioblastoma (Mes-GBM) affects more males as the result of cell-intrinsic sexual dimorphism in astrocyte transformation. We used astrocytes from neurofibromin-deficient (Nf1(–/–)) mice expressing a dominant-negative form of the tumor suppressor p53 (DNp53) and treated them with EGF as a Mes-GBM model. Male Mes-GBM astrocytes exhibited greater growth and colony formation compared with female Mes-GBM astrocytes. Moreover, male Mes-GBM astrocytes underwent greater tumorigenesis in vivo, regardless of recipient mouse sex. Male Mes-GBM astrocytes exhibited greater inactivation of the tumor suppressor RB, higher proliferation rates, and greater induction of a clonogenic, stem-like cell population compared with female Mes-GBM astrocytes. Furthermore, complete inactivation of RB and p53 in Mes-GBM astrocytes resulted in equivalent male and female tumorigenic transformation, indicating that intrinsic differences in RB activation are responsible for the predominance of tumorigenic transformation in male astrocytes. Together, these results indicate that cell-intrinsic sex differences in RB regulation and stem-like cell function may underlie the predominance of GBM in males

    Differential Neural Responses to Food Images in Women with Bulimia versus Anorexia Nervosa

    Get PDF
    BACKGROUND: Previous fMRI studies show that women with eating disorders (ED) have differential neural activation to viewing food images. However, despite clinical differences in their responses to food, differential neural activation to thinking about eating food, between women with anorexia nervosa (AN) and bulimia nervosa (BN) is not known. METHODS: We compare 50 women (8 with BN, 18 with AN and 24 age-matched healthy controls [HC]) while they view food images during functional Magnetic Resonance Imaging (fMRI). RESULTS: In response to food (vs non-food) images, women with BN showed greater neural activation in the visual cortex, right dorsolateral prefrontal cortex, right insular cortex and precentral gyrus, women with AN showed greater activation in the right dorsolateral prefrontal cortex, cerebellum and right precuneus. HC women activated the cerebellum, right insular cortex, right medial temporal lobe and left caudate. Direct comparisons revealed that compared to HC, the BN group showed relative deactivation in the bilateral superior temporal gyrus/insula, and visual cortex, and compared to AN had relative deactivation in the parietal lobe and dorsal posterior cingulate cortex, but greater activation in the caudate, superior temporal gyrus, right insula and supplementary motor area. CONCLUSIONS: Women with AN and BN activate top-down cognitive control in response to food images, yet women with BN have increased activation in reward and somatosensory regions, which might impinge on cognitive control over food consumption and binge eating

    Continental threat: How many common carp (Cyprinus carpio) are there in Australia?

    Get PDF
    Common carp (Cyprinus carpio) are one of the world's most destructive vertebrate pests. In Australia, they dominate many aquatic ecosystems causing a severe threat to aquatic plants, invertebrates, water quality, native fish and social amenity. The Australian Government is considering release of cyprinid herpesvirus-3 (CyHV-3) as a control measure and consequently a robust, continental-scale estimate of the carp population and biomass is essential to inform planning and risk management. Here, we pioneer a novel model-based approach to provide the first estimate of carp density (no/ha) and biomass density (kg/ha) at river reach/waterbody, basin and continental scales. We built a spatial layer of rivers and waterbodies, classified aquatic habitats and calculated the area of each throughout the range of carp in Australia. We then developed a database of fishery-independent electrofishing catch-per-unit-effort (CPUE) for habitat types, containing catch information for 574,145 carp caught at 4831 sites. Eastern Australia accounted for 96% of carp biomass and 92% of the total available wetted habitat area (16,686 km2) was occupied. To correct these data for variable detection efficiencies, we used existing electrofishing data and undertook additional field experiments to establish relationships between relative and absolute abundances. We then scaled-up site-based estimates to habitat types to generate continental estimates. The number of carp was estimated at 199.2 M (95%Crl: 106 M to 357.6 M) for an ‘average’ hydrological scenario and 357.5 M (95%Crl: 178.9 M to 685.1 M) for a ‘wet’ hydrological scenario. In eastern Australia, these numbers correspond with biomasses of 205,774 t (95%Crl: 117,532–356,482 t) (average scenario) and 368,357 t (95%Crl: 184,234–705,630 t) (wet scenario). At a continental scale the total biomass was estimated at 215,456 t for an ‘average’ hydrological scenario. Perennial lowland rivers had the highest CPUE and greatest biomass density (up to 826 kg/ha) and the modelled biomass exceeded a density-impact threshold of 80–100 kg/ha in 54% of wetlands and 97% of stream area in large lowland rivers. The continental-scale biomass estimates provide a baseline for focusing national conservation strategies to reduce carp populations below thresholds needed to restore aquatic ecosystems at a range of spatial scales

    Raising the participation age in historical perspective : Policy learning from the past?

    Get PDF
    The raising of the participation age (RPA) to 17 in 2013 and 18 in 2015 marks a historic expansion of compulsory education. Despite the tendency of New Labour governments to eschew historical understanding and explanation, RPA was conceived with the benefit of an analysis of previous attempts to extend compulsion in schooling. This paper assesses the value of a historical understanding of education policy. The period from inception to the projected implementation of RPA is an extended one which has crossed over the change of government, from Labour to Coalition, in 2010. The shifting emphases and meanings of RPA are not simply technical issues but connect to profound historical and social changes. An analysis of the history of the raising of the school leaving age reveals many points of comparison with the contemporary situation. In a number of key areas it is possible to gain insights into the ways in which the study of the past can help to comprehend the present: the role of human capital, the structures of education, in curriculum development and in terms of preparations for change
    corecore