11 research outputs found

    A Pipeline Strategy for Grain Crop Domestication

    Get PDF
    In the interest of diversifying the global food system, improving human nutrition, and making agriculture more sustainable, there have been many proposals to domesticate wild plants or complete the domestication of semidomesticated orphan crops. However, very few new crops have recently been fully domesticated. Many wild plants have traits limiting their production or consumption that could be costly and slow to change. Others may have fortuitous preadaptations that make them easier to develop or feasible as high-value, albeit low-yielding, crops. To increase success in contemporary domestication of new crops, we propose a pipeline approach, with attrition expected as species advance through the pipeline. We list criteria for ranking domestication candidates to help enrich the starting pool with more preadapted, promising species. We also discuss strategies for prioritizing initial research efforts once the candidates have been selected: developing higher value products and services from the crop, increasing yield potential, and focusing on overcoming undesirable traits. Finally, we present new-crop case studies that demonstrate that wild species’ limitations and potential (in agronomic culture, shattering, seed size, harvest, cleaning, hybridization, etc.) are often only revealed during the early phases of domestication. When nearly insurmountable barriers were reached in some species, they have been (at least temporarily) eliminated from the pipeline. Conversely, a few species have moved quickly through the pipeline as hurdles, such as low seed weight or low seed number per head, were rapidly overcome, leading to increased confidence, farmer collaboration, and program expansion.Fil: DeHaan, Lee R.. The Land Institute; Estados UnidosFil: Van Tassel, David L.. The Land Institute; Estados UnidosFil: Anderson, James A.. University of Minnesota; Estados UnidosFil: Asselin, Sean R.. University of Manitoba; CanadáFil: Barnes, Richard. University of Minnesota; Estados UnidosFil: Baute, Gregory J.. University of British Columbia; CanadáFil: Cattani, Douglas J.. University of Manitoba; CanadáFil: Culman, Steve W.. Ohio State University; Estados UnidosFil: Dorn, Kevin M.. University of Minnesota; Estados UnidosFil: Hulke, Brent S.. United States Department of Agriculture. Agriculture Research Service; Estados UnidosFil: Kantar, Michael. University of British Columbia; CanadáFil: Larson, Steve. Forage and Range Research Laboratory; Estados UnidosFil: David Marks, M.. University of Minnesota; Estados UnidosFil: Miller, Allison J.. Saint Louis University; Estados UnidosFil: Poland, Jesse. Kansas State University; Estados UnidosFil: Ravetta, Damián Andrés. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Museo Paleontológico Egidio Feruglio; ArgentinaFil: Rude, Emily. University of Wisconsin; Estados UnidosFil: Ryan, Matthew R.. Cornell University; Estados UnidosFil: Wyse, Don. University of Minnesota; Estados UnidosFil: Zhang, Xiaofei. University of Minnesota; Estados Unido

    Linking soil microbial community structure to potential carbon mineralization: A continental scale assessment of reduced tillage

    Get PDF
    Potential carbon mineralization (Cmin) is a commonly used indicator of soil health, with greater Cmin values interpreted as healthier soil. While Cmin values are typically greater in agricultural soils managed with minimal physical disturbance, the mechanisms driving the increases remain poorly understood. This study assessed bacterial and archaeal community structure and potential microbial drivers of Cmin in soils maintained under various degrees of physical disturbance. Potential carbon mineralization, 16S rRNA sequences, and soil characterization data were collected as part of the North American Project to Evaluate Soil Health Measurements (NAPESHM). Results showed that type of cropping system, intensity of physical disturbance, and soil pH influenced microbial sensitivity to physical disturbance. Furthermore, 28% of amplicon sequence variants (ASVs), which were important in modeling Cmin, were enriched under soils managed with minimal physical disturbance. Sequences identified as enriched under minimal disturbance and important for modeling Cmin, were linked to organisms which could produce extracellular polymeric substances and contained metabolic strategies suited for tolerating environmental stressors. Understanding how physical disturbance shapes microbial communities across climates and inherent soil properties and drives changes in Cmin provides the context necessary to evaluate management impacts on standardized measures of soil microbial activity

    Soil Protein as a Rapid Soil Health Indicator of Potentially Available Organic Nitrogen

    No full text
    Increased interest in practical, routine evaluation of soil health has created a need for rapid and inexpensive indicators that reflect soil nitrogen (N) status. Here we propose a soil protein measurement as an indicator of a functionally relevant and sensitive pool of organic N that can be rapidly quantified in soil testing laboratories. The procedure is based on a method that was historically used to measure “glomalin,” a pool putatively of arbuscular mycorrhizal fungal origin. Laboratory validation experiments demonstrate that the procedure extracts proteins from a wide range of sources, not just glomalin, and that continued use of the term is inaccurate and limits the application of the method. Therefore, we propose that the pool of proteins extracted by this method can be viewed more broadly as a soil health indicator that reflects the primary pool of organically bound N in soil and thus as potentially available organic N. We provide a laboratory protocol that details autoclaving soil in a neutral sodium citrate buffer solution followed by clarification and protein quantification steps

    Assessing the sensitivity and repeatability of permanganate oxidizable carbon as a soil health metric: An interlab comparison across soils

    No full text
    Soil organic matter is central to the soil health framework. Therefore, reliable indicators of changes in soil organic matter are essential to inform land management decisions. Permanganate oxidizable carbon (POXC), an emerging soil health indicator, has shown promise for being sensitive to soil management. However, strict standardization is required for widespread implementation in research and commercial contexts. Here, we used 36 soils—three from each of the 12 USDA soil orders—to determine the effects of sieve size and soil mass of analysis on POXC results. Using replicated measurements across 12 labs in the US and the EU (n = 7951 samples), we quantified the relative importance of 1) variation between labs, 2) variation within labs, 3) effect soil mass, and 4) effect of soil sieve size on the repeatability of POXC. We found a wide range of overall variability in POXC values across labs (0.03 to 171.8%; mean = 13.4%), and much of this variability was attributable to within-lab variation (median = 6.5%) independently of soil mass or sieve size. Greater soil mass (2.5 g) decreased absolute POXC values by a mean of 177 mg kg−1 soil and decreased analytical variability by 6.5%. For soils with organic carbon (SOC) >10%, greater soil mass (2.5 g) resulted in more frequent POXC values above the limit of detection whereas the lower soil mass (0.75 g) resulted in POXC values below the limit of detection for SOC contents −1 while decreasing the analytical variability by 1.8%. In general, soils with greater SOC contents had lower analytical variability. These results point to potential standardizations of the POXC protocol that can decrease the variability of the metric. We recommend that the POXC protocol be standardized to use 2.5 g for soils <10% SOC. Sieve size was a relatively small contributor to analytical variability and therefore we recommend that this decision be tailored to the study purpose. Tradeoffs associated with these standardizations can be mitigated, ultimately providing guidance on how to standardize POXC for routine analysis.</p
    corecore