2,176 research outputs found

    Upgrade of the Minos+ Experiment Data Acquisition for the High Energy NuMI Beam Run

    Full text link
    The Minos+ experiment is an extension of the Minos experiment at a higher energy and more intense neutrino beam, with the data collection having begun in the fall of 2013. The neutrino beam is provided by the Neutrinos from the Main Injector (NuMI) beam-line at Fermi National Accelerator Laboratory (Fermilab). The detector apparatus consists of two main detectors, one underground at Fermilab and the other in Soudan, Minnesota with the purpose of studying neutrino oscillations at a base line of 735 km. The original data acquisition system has been running for several years collecting data from NuMI, but with the extended run from 2013, parts of the system needed to be replaced due to obsolescence, reliability problems, and data throughput limitations. Specifically, we have replaced the front-end readout controllers, event builder, and data acquisition computing and trigger processing farms with modern, modular and reliable devices with few single points of failure. The new system is based on gigabit Ethernet TCP/IP communication to implement the event building and concatenation of data from many front-end VME readout crates. The simplicity and partitionability of the new system greatly eases the debugging and diagnosing process. The new system improves throughput by about a factor of three compared to the old system, up to 800 megabits per second, and has proven robust and reliable in the current run.Comment: 3 page

    Bonobos Maintain Immune System Diversity with Three Functional Types of MHC-B

    Get PDF
    Fast-evolving MHC class I polymorphism serves to diversify NK cell and CD8 T cell responses in individuals, families, and populations. Because only chimpanzee and bonobo have strict orthologs of all HLA class I, their study gives unique perspectives on the human condition. We defined polymorphism of Papa-B, the bonobo ortholog of HLA-B, for six wild bonobo populations. Sequences for Papa-B exon 2 and 3 were determined from the genomic DNA in 255 fecal samples, minimally representing 110 individuals. Twenty-two Papa-B alleles were defined, each encoding a different Papa-B protein. No Papa-B is identical to any chimpanzee Patr-B, human HLA-B, or gorilla Gogo-B. Phylogenetic analysis identified a Glade of MHC-B, defined by residues 45-74 of the alpha(1) domain, which is broadly conserved among bonobo, chimpanzee, and gorilla. Bonobo populations have 3-14 Papa-B allotypes. Three Papa-B are in all populations, and they are each of a different functional type: allotypes having the Bw4 epitope recognized by killer cell Ig-like receptors of NK cells, allotypes having the Cl epitope also recognized by killer cell Ig-like receptors, and allotypes having neither epitope. For population Malebo, these three Papa-B are the only Papa-B allotypes. Although small in number, their sequence divergence is such that the nucleotide diversity (mean proportional distance) of Papa-B in Malebo is greater than in the other populations and is also greater than expected for random combinations of three Papa-B. Overall, Papa-B has substantially less diversity than Patr-B in chimpanzee subspecies and HLA-B in indigenous human populations, consistent with bonobo having experienced narrower population bottlenecks

    Examining leptogenesis with lepton flavor violation and the dark matter abundance

    Full text link
    Within a supersymmetric (SUSY) type-I seesaw framework with flavor-blind universal boundary conditions, we study the consequences of requiring that the observed baryon asymmetry of the Universe be explained by either thermal or non-thermal leptogenesis. In the former case, we find that the parameter space is very constrained. In the bulk and stop-coannihilation regions of mSUGRA parameter space (that are consistent with the measured dark matter abundance), lepton flavor-violating (LFV) processes are accessible at MEG and future experiments. However, the very high reheat temperature of the Universe needed after inflation (of about 10^{12} GeV) leads to a severe gravitino problem, which disfavors either thermal leptogenesis or neutralino dark matter. Non-thermal leptogenesis in the preheating phase from SUSY flat directions relaxes the gravitino problem by lowering the required reheat temperature. The baryon asymmetry can then be explained while preserving neutralino dark matter, and for the bulk or stop-coannihilation regions LFV processes should be observed in current or future experiments.Comment: 20 pages, 5 figures, 1 tabl

    Grazing Collisions of Black Holes via the Excision of Singularities

    Get PDF
    We present the first simulations of non-headon (grazing) collisions of binary black holes in which the black hole singularities have been excised from the computational domain. Initially two equal mass black holes mm are separated a distance ≈10m\approx10m and with impact parameter ≈2m\approx2m. Initial data are based on superposed, boosted (velocity ≈0.5c\approx0.5c) solutions of single black holes in Kerr-Schild coordinates. Both rotating and non-rotating black holes are considered. The excised regions containing the singularities are specified by following the dynamics of apparent horizons. Evolutions of up to t≈35mt \approx 35m are obtained in which two initially separate apparent horizons are present for t≈3.8mt\approx3.8m. At that time a single enveloping apparent horizon forms, indicating that the holes have merged. Apparent horizon area estimates suggest gravitational radiation of about 2.6% of the total mass. The evolutions end after a moderate amount of time because of instabilities.Comment: 2 References corrected, reference to figure update

    Characterizing expression changes in noncoding RNAs during aging and heterochronic parabiosis across mouse tissues

    Get PDF
    Molecular mechanisms of organismal and cell aging remain incompletely understood. We, therefore, generated a body-wide map of noncoding RNA (ncRNA) expression in aging (16 organs at ten timepoints from 1 to 27 months) and rejuvenated mice. We found molecular aging trajectories are largely tissue-specifc except for eight broadly deregulated microRNAs (miRNAs). Their individual abundance mirrors their presence in circulating plasma and extracellular vesicles (EVs) whereas tissue-specifc ncRNAs were less present. For miR-29c-3p, we observe the largest correlation with aging in solid organs, plasma and EVs. In mice rejuvenated by heterochronic parabiosis, miR-29c-3p was the most prominent miRNA restored to similar levels found in young liver. miR-29c-3p targets the extracellular matrix and secretion pathways, known to be implicated in aging. We provide a map of organism-wide expression of ncRNAs with aging and rejuvenation and identify a set of broadly deregulated miRNAs, which may function as systemic regulators of aging via plasma and EVs
    • …
    corecore