Abstract

We present the first simulations of non-headon (grazing) collisions of binary black holes in which the black hole singularities have been excised from the computational domain. Initially two equal mass black holes mm are separated a distance 10m\approx10m and with impact parameter 2m\approx2m. Initial data are based on superposed, boosted (velocity 0.5c\approx0.5c) solutions of single black holes in Kerr-Schild coordinates. Both rotating and non-rotating black holes are considered. The excised regions containing the singularities are specified by following the dynamics of apparent horizons. Evolutions of up to t35mt \approx 35m are obtained in which two initially separate apparent horizons are present for t3.8mt\approx3.8m. At that time a single enveloping apparent horizon forms, indicating that the holes have merged. Apparent horizon area estimates suggest gravitational radiation of about 2.6% of the total mass. The evolutions end after a moderate amount of time because of instabilities.Comment: 2 References corrected, reference to figure update

    Similar works