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Characterizing expression changes  
in noncoding RNAs during aging  
and heterochronic parabiosis across  
mouse tissues

Viktoria Wagner    1, Fabian Kern    1,2,3, Oliver Hahn2, Nicholas Schaum2, 
Nicole Ludwig4, Tobias Fehlmann    1, Annika Engel    1, Dominic Henn5, 
Shusruto Rishik1, Alina Isakova    6, Michelle Tan6, Rene Sit6, Norma Neff6, 
Martin Hart4, Eckart Meese4, Steve Quake6, Tony Wyss-Coray    2,7,8   & 
Andreas Keller    1,2,3,8 

Molecular mechanisms of organismal and cell aging remain incompletely 
understood. We, therefore, generated a body-wide map of noncoding  
RNA (ncRNA) expression in aging (16 organs at ten timepoints from 1 to  
27 months) and rejuvenated mice. We found molecular aging trajectories 
are largely tissue-specific except for eight broadly deregulated microRNAs 
(miRNAs). Their individual abundance mirrors their presence in circulating 
plasma and extracellular vesicles (EVs) whereas tissue-specific ncRNAs 
were less present. For miR-29c-3p, we observe the largest correlation with 
aging in solid organs, plasma and EVs. In mice rejuvenated by heterochronic 
parabiosis, miR-29c-3p was the most prominent miRNA restored to similar 
levels found in young liver. miR-29c-3p targets the extracellular matrix 
and secretion pathways, known to be implicated in aging. We provide a 
map of organism-wide expression of ncRNAs with aging and rejuvenation 
and identify a set of broadly deregulated miRNAs, which may function as 
systemic regulators of aging via plasma and EVs.

One primary risk factor for cancer, diabetes, cardiovascular disorders 
and neurodegenerative diseases is aging1. Therefore, understanding 
the underlying mechanisms of this complex process is essential to 
improve quality of life by developing new therapies. Finding the most 
promising therapy target is challenging, as it is not possible for a single  
level of omics data to explain whether the changes discovered  
are causative to or the result of aging2. Epigenetic markers like DNA 

methylations have been identified as promising aging biomarkers3,4. 
Current research efforts, including transcriptomic studies of major 
organs in aged mice5,6, largely lack information covering the whole RNA 
diversity, for example, the diverse classes of noncoding RNAs (ncRNAs). 
Attempting to better differentiate cause and effect, we herein present 
the corresponding ncRNA dataset to the Tabula Muris Senis (TMS) 
cohort5. Such RNAs are part of epigenetic reprogramming and altered 

Received: 16 August 2022

Accepted: 15 March 2023

Published online: xx xx xxxx

 Check for updates

1Clinical Bioinformatics, Saarland University, Saarbrücken, Germany. 2Department of Neurology and Neurological Sciences, Stanford University, Stanford, 
CA, USA. 3Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)–Helmholtz Centre for Infection Research (HZI), Saarland University Campus, 
Saarbrücken, Germany. 4Department of Human Genetics, Saarland University, Saarland, Germany. 5Department of Plastic Surgery, University of Texas 
Southwestern Medical Center, Dallas, TX, USA. 6Department of Bioengineering, Stanford University, Stanford, CA, USA. 7The Phil and Penny Knight 
Initiative for Brain Resilience, Stanford University, Stanford, CA, USA. 8These authors jointly supervised this work: Tony Wyss-Coray, Andreas Keller. 

 e-mail: twc@stanford.edu; andreas.keller@ccb.uni-saarland.de

http://www.nature.com/naturebiotechnology
https://doi.org/10.1038/s41587-023-01751-6
http://orcid.org/0000-0002-1957-0658
http://orcid.org/0000-0002-8223-3750
http://orcid.org/0000-0003-1967-2918
http://orcid.org/0000-0001-5570-3115
http://orcid.org/0000-0003-1113-6889
http://orcid.org/0000-0001-5893-0831
http://orcid.org/0000-0002-5361-0895
http://crossmark.crossref.org/dialog/?doi=10.1038/s41587-023-01751-6&domain=pdf
mailto:twc@stanford.edu
mailto:andreas.keller@ccb.uni-saarland.de


Nature Biotechnology

Article https://doi.org/10.1038/s41587-023-01751-6

and compared it with the sequence reference length (Extended Data 
Fig. 1d). Even though the fraction of the sequence covered by the maxi-
mal assembly decreased for larger RNAs (Spearman’s rho = −0.43), we 
verified that throughout all RNA classes, we were still able to reproduce 
for a subset up to 100% of the full-length reference (Supplementary 
Table 2). Therefore, we decided to include the full dataset as a refer-
ence for future studies while implementing restrictive filtering steps 
to increase the reliability of our data. Especially the somatic piRNAs 
exceeded the expected counts, likely driven by artifacts in piRNA 
annotation13 and calling for additional quality control filters. We first 
retained piRNAs encoded in prepachytene piRNA genomic clusters14,15 
to minimize the number of false positive hits. Next, we removed low 
abundant features across all ncRNA classes, keeping those with at least 
1 read mapped per million (rpmm) in at least one sample, resulting in 
the abundant dataset (Fig. 1a, right column). Applying this stringent 
filtering, the number of piRNAs in our dataset decreased from 43,799 
detected down to 43 abundant, likely removing most falsely annotated 
features13.

Clustering by ncRNA expression using t-distributed stochastic 
neighbor embedding (t-SNE), samples split into tissue-specific groups 
(Fig. 1b). One cluster contained skin, GAT and SCAT samples, which 
likely can be explained by their biological and functional close rela-
tionship of containing similar cell types. To check whether relevant 
biological factors outweigh technical ones, we performed a principal 
variance component analysis. The highest proportion of variance in the 
data was explained by tissue identity (Extended Data Fig. 2a). Annotat-
ing the t-SNE plot by animal sex revealed a uniform spread, excluding 
it as a major driver of the observed variance (Extended Data Fig. 2b).

Following our main objective to identify organ-specific aging 
trajectories, we added a tissue-specific, that is, local filtering to check 
whether ncRNA expression changed not only between tissues but also 
with age (cf. Methods). On the locally-filtered data, we calculated read 
count percentages for all RNA classes. As for the detected reads, we 
observed tissue-specific distributions (Fig. 1c). Analyzing those over 
time, we identified two clusters of tissues (Extended Data Fig. 2c). 
One exhibited a stable count distribution (mean variance < 4.5%) and  
the other showed high variance within the count distribution (mean 
variance > 4.5%). Specifically, 3 of 16 tissues showed high variance 
(brain, BAT and limb muscle), while most tissues (13–16) were charac
terized by a stable read distribution (including marrow and liver)  
(Fig. 1d and Extended Data Fig. 3). In the brain, the share of snRNA reads 
decreased from 77.9% to 10.0%, while the share of miRNAs increased 
from 9.1% to 28.5%. In BAT, the miRNA share grew steadily from 4.1%  
to 26.4% and the rRNA share dropped from 62.7% to 27.8%.

The observed variations of the RNA classes prompted us to  
assess the expression changes during aging for the individual ncRNAs. 
Therefore, we determined the Spearman rank correlation of age with 
the expression of every ncRNA in each tissue separately. We identified 
31 tRNA fragments that were substantially differentially expressed 
between 3 and 21 months (two-sided t-test, P adjust < 0.05). Eight 
tRNA fragments showed increased expression (in brain and lung) and  
23 showed decreased expression with age (in bone, limb muscle, skin 
and GAT). tRNA-related metabolism, transcription, modification  
and derivatives have vital roles in aging and longevity of organisms, 
as tRNA expression decreases with age16. We further observed that 
miRNAs displayed the strongest correlations with age over all tissues 
(exceeding the interval of −0.5 to 0.5; Fig. 1e). Given that miRNAs  
were captured in full-length by our sequencing platform, their high 
abundance across tissues and the fact that they exhibited the largest 
effect size, we further focused on miRNAs for downstream analysis.

MiRNA lifespan trajectories are largely tissue specific
For the intersection of miRNAs expressed in all tissues, we observed 
more markers being correlated positively than negatively with age  
(Fig. 2a and Supplementary Table 3). In contrast, large sets of miRNAs 

intercellular communication, which have been described as hallmarks 
of aging1,7. Further, they can have a role in intercellular communication 
via extracellular vesicles (EV)8. MicroRNAs (miRNA), a class of ncRNAs, 
target messenger RNA (mRNA) through base-pair binding and thereby 
regulate gene expression via post-transcriptional gene silencing7,9. 
Furthermore, miRNAs act as age-specific disease biomarkers10 and 
have been identified as regulators in aging-associated phenotypes11.

We analyzed eight classes of ncRNAs in TMS separately and 
together with the existing single-cell and bulk mRNA datasets5. The 
previously observed tissue-driven shifts in gene expression with aging 
that correlate with corresponding protein levels in plasma could be 
caused by epigenetic regulation mechanisms mediated by ncRNA. 
Furthermore, these may not only be implicated in aging but also have a 
role in the regenerative effects observed in aging interventions such as 
heterochronic parabiosis. Regenerative activities within young blood 
with translational implications for aged liver, muscle and brain have 
been observed before12. Therefore, we performed ncRNA sequencing 
of tissue samples following heterochronic parabiosis experiments, 
in which a young (3–4 months) and an aged (19 months) mouse share 
a common blood circulation. Our two datasets describe age- and 
rejuvenation-related ncRNA expression changes to reveal the potential 
of ncRNAs as targets for new pharmaceutical approaches.

Results
Mapping of ncRNA expression across mouse organs
We sequenced 771 tissue samples of the TMS cohort to map mole
cular shifts across the whole organism during healthy aging (Fig. 1a). 
The protocol enriches for small ncRNA, especially mature miRNAs. 
Even though full-length reads cover only small ncRNAs (miRNAs or 
piwi-interacting RNAs (piRNAs)) completely, the protocol generates 
measurable fragments of longer ncRNAs. This sequencing strategy 
extends the existing mRNA TMS dataset5 with miRNA, piRNA, long 
ncRNA (lncRNA), small nucleolar RNA (snoRNA), small nuclear RNA 
(snRNA), transfer RNA (tRNA), ribosomal RNA (rRNA) and small Cajal 
body-specific RNA (scaRNA). The tissue sample collection includes 
16 solid tissues of C57BL6/JN mice (bone (femurs and tibiae), brain 
(hemibrain), brown adipose tissue (BAT, interscapular depot), gonadal 
adipose tissue (GAT, inguinal depot), heart, kidney, limb muscle (tibialis 
anterior), liver, lung, bone marrow, mesenteric adipose tissue (MAT), 
pancreas, skin, small intestine (duodenum), spleen and subcutaneous 
adipose tissue (SCAT, posterior depot)). The selected time course covers  
the mouse lifespan from a developmental age of 1 month up to  
27 months (males: aged 1, 3, 6, 9, 12, 15, 18, 21, 24 and 27 months; females: 
aged 1, 3, 6, 9, 12, 15, 18 and 21 months). With up to six mice per timepoint, 
the study covers a maximum of 960 samples (16 organs × 10 timepoints × 6  
replicates). As not all mice survived to the later timepoints and we 
further excluded 26 low-quality RNA samples, we finally included  
771 high-quality samples in the study (Supplementary Table 1).

We mapped resulting sequencing reads against 87,590 ncRNA 
sequences (Fig. 1a, left column) derived from established reference data-
bases (miRNAs, miRBase 22, tRNAs: GtRNAdb 18.1, piRNA: RNACentral 15,  
all other ncRNAs: Ensembl 100). Altogether, we detected reads  
mapping to 58,422 different ncRNAs (Fig. 1a, middle column), with 
miRNAs being the most abundant class. An average of 36.2% of reads 
across tissues mapped to miRNAs (Extended Data Fig. 1a). The distri-
bution of reads to RNA classes, however, varied substantially between 
tissues (P < 0.05, Kruskal–Wallis test; Extended Data Fig. 1b). We  
thus asked whether the variation in read distribution is related to the 
length of representatives. We generated aligned sequence profiles 
to quantify the length of sequences covered with our reads. First, 
we explored the percentage of sequence length covered versus the 
sequence reference length. Even for very long sequences exceeding 
10,000 bases, we partially recovered large fractions or even the com-
plete sequence (Extended Data Fig. 1c). We also computed the maximal 
assembly for each RNA, that is, the longest contiguous read mapping, 
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Fig. 1 | Atlas of noncoding RNA expression along the mouse lifespan. a, Study 
overview—data of the aging (TMS) cohort, consisting of mouse samples collected 
from 16 different tissues at ten different timepoints throughout the lifespan with 
maximal six replicates per timepoint varying due to sample and sequencing 
quality. A total of 771 samples were sequenced, and the reads were annotated 
to the 87,590 different RNA reference sequences from eight RNA classes. Of the 
RNAs in the databases listed on the left, 58,422 different ncRNAs were annotated 
in the raw reads and we found 7,883 noncoding features as abundant expressed 
in our TMS aging cohort. Created with BioRender. b, t-SNE visualization of all 

samples of the TMS cohort over all detected noncoding RNAs, colored by tissue 
of origin. c, Percentage of counts per RNA class, calculated on total counts 
per tissue after local filtering for all tissues in the TMS cohort, color coded by 
RNA-class color legend as indicated in a. d, Variation of mean count distribution 
per RNA class over the lifespan of the mouse in the brain, BAT, marrow and 
liver; calculated count percentages per sample after local filtering. Created 
with BioRender. e, Density plot of Spearman rank correlation of all expressed 
noncoding RNA with age in each individual tissue grouped by RNA classes, 
density scaled individually for every RNA class.
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were correlated with age in a specific tissue. For example, six miRNAs 
were negatively correlated exclusively in limb muscle and 37 were posi-
tively correlated only in BAT. One of these miRNAs, miR-107, regulates 
insulin sensitivity and is postulated as a target for the treatment of  
type 2 diabetes and obesity17. Its increase in aging could be connected 
to the fact that age is a risk factor for diabetes1.

Certain miRNAs were linearly correlated with age in more than 
one tissue (Fig. 2b). MiR-29a-3p was positively correlated in eight  
tissues, and miR-300-3p, miR-487b-3p and miR-541-5p were nega-
tively correlated in five tissues each. Based on these observations, we  
separated the miRNAs into the following three classes: nonaging- 
related, local aging and global aging miRNAs. Local aging miRNAs 
were defined as correlated with age in at least one tissue exceeding  
the interval of −0.5 to 0.5. We accordingly defined miRNAs correlated 
with age in more than five different tissues as globally aging. Follow-
ing these definitions, we identified the three mentioned negatively  
correlated miRNAs together with five positively correlated miRNAs 
(miR-29a-3p, miR-29c-3p, miR-155-5p, miR-184-3p and miR-1895)  
as globally aging.

We then examined whether nonlinear age-related expression 
changes occur as well. Using the 3m timepoint as a baseline, we calcu-
lated foldchanges (FC) for all later timepoints and respective P values. 
Based on this analysis, we determined the number of deregulated 
miRNAs (Fig. 2c). Most were deregulated in BAT, driven by the large 
fraction of positively correlated local aging miRNAs. Investigating the 
brain, we found a peak at the ages 12 and 18 months with a count of 412 
and 427 deregulated miRNAs, respectively. Most of all substantially 
deregulated miRNAs (77.6%) in brain showed the strongest effect at 
12 and 18 months (Fig. 2d, Extended Data Fig. 4a,b and Supplemen-
tary Table 4). The higher count of deregulated miRNA at certain time-
points matched our expectation, as we hypothesized that miRNAs were 
responsible for the regulation of the previously reported transcriptome 
changes18. We further confirmed that those effects were not driven by 
lowly expressed features—we projected the mean expression against 
the FC for all tissues and all ncRNAs per timepoint (Extended Data 
Fig. 5). In line with our assumption, substantial FCs could be observed 
across all expression scales.

To identify common patterns within the nonlinear changes over 
time, we calculated z scores for all miRNAs being expressed in every 
tissue. Each miRNA in every single tissue was displayed as an aging  
trajectory and clustered across all organs. Ten of the 20 clusters 
obtained were composed mainly of one tissue; thus, we propose the 
existence of organ-specific miRNA time course signatures (Fig. 2e). Half 
of the miRNAs in cluster 2, with a peak at 3 months and a late increase 
again at 24 months, originated from the skin. Cluster 9, which showed 
a peak at 12 and 18 months, was composed of 61.2% brain miRNAs. The 
expression of miRNAs in cluster 13 increased continuously from the 
age of 6 months on, and this trajectory was specific for BAT (70.6%). 
In summary, we determined 10 of the 20 clusters to be tissue-specific, 
with at least 30% of miRNA originating from a single tissue (Extended 
Data Fig. 6).

The global aging miRNAs marked an exception to this tissue- 
specific clustering. Trajectories from more than five different  

organs for seven global aging miRNAs clustered together. For instance, 
we found the trajectories of miR-29a-3p and miR-29c-3p from ten and 
eight different tissues in cluster 20, respectively (Fig. 2f). The expres-
sion of miRNAs within this cluster increased continuously with age. 
This consistent signature could be indicative of the regulation of  
key pathways across all organs upon aging. Thus, we investigated the 
relationship between miRNA and mRNA expression closer.

Transcriptome changes mirrored by global aging miRNAs
The previous analyses suggested five miRNAs as cross-organ aging 
markers increasing with age (Fig. 2b). Following the biological mecha-
nism, we expected repression of target genes with aging. We chose to 
identify potential new targets in an unbiased manner by correlating 
miRNA with mRNA expression levels from the TMS dataset5. In the first 
step, we defined targets by exhibiting a significant inverse correlation 
(r < −0.4, P < 0.05). To support the validity of our approach, we checked 
the share of predicted miRNA–mRNA interactions with conserved 
binding sites for the miRNAs. As a control, we compared this number  
against the share of conserved binding sites in the miRNA–mRNA inter-
actions predicted via positive correlation. For 7.3% (9 of 122) of the 
miRNA–mRNA interactions identified via inverse correlation, we found 
at least one conserved miRNA binding site, as compared to the 2.1% 
(120 of 54,992) miRNA–mRNA interactions in the control set (Fisher’s 
exact test, P = 0.0018). Because a gene can contain multiple binding 
sites across multiple 3′ UTRs and different site types exhibit different 
strengths, we repeated the analysis for each type of binding site. The 
amount of conserved 8mer binding sites is 6.3 times higher as compared 
to the control (4.91% inv. correlation, 0.78% control; P = 0.0006), for 
conserved 7mer-8m binding sites 3.8 times higher (4.92% inv. correla-
tion, 1.30% control; P = 0.0062) and for conserved 7mer-1a binding sites 
9.0 times higher (2.45% inv. correlation, 0.27% control; P = 0.0064).

The filtered target gene sets showed distinct overlaps (cf. Methods; 
Fig. 3a and Supplementary Table 5). Three of the six targets are shared 
among all miRNAs, Eln, Col1a1 and Col3a1, which have a role in pro-
tein digestion and absorption and encode extracellular matrix (ECM)  
proteins. These are already validated targets for miR-29b-1/miR-29a 
(ref. 19). Overall, enriched processes for all targets were dominated by 
ECM-associated processes, such as ECM organization, collagen fibril 
organization and ECM-receptor interaction (Fig. 3b)20. Senescent cells 
are known to exhibit altered expression and organization of ECM and 
the ‘senescence-associated secretory phenotype’1,21. Our data suggest 
that these effects could be regulated by global aging miRNAs. Another 
part of the network composed of mainly Y-chromosome-coded pro-
teins contained proteins related to ‘ubiquitin-proteasome depend-
ent proteolysis’ (Usp9y), histone modification introducing proteins 
(Kdm5d) and probable transcriptional activators (Zfy1, Zfy2). Hence, 
other layers of regulation mechanisms are targeted. The ‘AGE-RAGE 
signaling pathway in diabetic complications’ and ‘dysregulated miRNA 
targeting in insulin/PI3K-AKT signaling’ were enriched, supporting our 
suggestion of the importance of miRNA regulation in nutrient sensing.

Consistent with the enriched pathways for the targets of cross- 
organ aging miRNAs were the enriched pathways for the targets of 
the local aging miRNAs. The ‘PI3K-AKT signaling pathway’, ‘protein 

Fig. 2 | Global and tissue-specific miRNA expression patterns with aging.  
a, Heatmap of Spearman rank correlation values of the intersection of miRNAs 
expressed in all tissues, color coded for positively correlated in blue (r > 0.5), 
negatively correlated in red (r < −0.5) and not correlated in white (−0.5 < r < 0.5). 
b, Heatmap of miRNAs (anti-) correlated with age in at least two tissues, colored 
by number of tissues (anti-) correlated and divided into miRNA positively 
and negatively correlated with age. c, Heatmap for the count of deregulated 
miRNAs in each tissue at each subsequent timepoint. Deregulated miRNAs are 
determined by calculating the foldchange of all later timepoints versus 3 months 
of age and miRNA with foldchanges <2/3 or >3/2 are considered deregulated.  
d, Volcano plot of all miRNAs expressed in brain, log2(FC) versus −log10(P values)  

(two-sided t-test) calculated between mice aged 3 months and all later time
points with comparisons for 12 months (light red) and 18 months (light blue) 
highlighted. e, Whole organism miRNA trajectory clustering—z-scored 
trajectories of each expressed miRNA in each tissue over the entire lifespan of the 
mice were calculated. These trajectories were grouped into 20 clusters. Three 
clusters are displayed as examples, showing tissue-specific miRNA signatures. 
Cluster 2 is composed of 50.1% miRNAs originating from skin, cluster 9 of 61.2% 
miRNAs from brain and cluster 13 of 70.6% miRNAs from BAT. f, Cluster 20 of the 
whole organism miRNA trajectory clustering—the cluster contains two global 
aging miRNA, miR-29a-3p from ten different tissues and miR-29c-3p from eight 
different tissues.
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digestion and adsorption’, ‘metabolic pathways’, ‘adipocytokine sign-
aling pathway’ and ‘insulin resistance’ were found among the top 20 
locally enriched pathways in targeted mRNAs (Extended Data Fig. 6b).

Through a reduction of miRNA expression during aging, the 
repression of gene expression is potentially reduced or even lost. Gene 
targets for global aging miRNAs reducing repression with age were 
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identified via correlation (Fig. 2b) (r < −0.4, P < 0.05). The expression 
of three miRNAs, miR-300-3p, miR-487b-3p and miR-541-3p, decreased 
during the lifespan in five tissues. The overlap of their potential targets  
was high, with 138 of 327 predicted interactions (Fig. 3c and Supple
mentary Table 6). The identified targets exhibited a functional 
enrichment for pathways related to immune system processes, such 
as ‘cytokine–cytokine receptor interaction’, ‘Th1 and Th2 cell differen-
tiation’, ‘Th17 cell differentiation’, ‘chemokine signaling pathway’ and 
‘NF-kappa B signaling pathway’. The network was particularly dense in 
its center, with targets related to ‘adaptive immunity’, ‘immunoglobu-
lin’, ‘hematopoietic lineage’, ‘immune receptor activity’ and ‘cytokine 
activity’ (Fig. 3d). We also determined the locally enriched pathways 
for all miRNAs in every individual tissue whose expression decreased 
upon aging via inverse correlation with mRNA targets. These were 
similarly dominated by immune-related processes (Extended Data 
Fig. 6c). As immune senescence and inflammation are hallmarks of 
aging1, it is crucial to further investigate these potentially age-sensitive 
regulation mechanisms.

We chose the global aging miR-29c-3p as an example for further 
investigation. In liver and kidney, expression increased monotonically 
over the lifespan as well as in BAT but at a lower baseline expression 
(Fig. 3e). In the lung, the steep increase during early adulthood ends 
at approximately 12 months of age. A general trend of miR-29c-3p 
expression increase was present in all tissues, but expression levels 
and the course of increase showed tissue-specific patterns (Extended 
Data Fig. 7).

miR-29c-3p exhibits an organ-specific rejuvenation response
Expansive beneficial effects on cognition, muscle strength and bone 
repair have been observed for heterochronic parabiosis via a shared 
common circulation, or systemic infusions of young blood22. We 
sequenced tissue samples from a parabiosis intervention cohort to 
determine whether the young blood in aged individuals influences 
small ncRNA expression. The cohort was composed of 176 samples 
from six different organs of isochronic young (IY) and aged (IA), and 
heterochronic young (HY) and aged mice (HA) (Supplementary Table 1).  
Rejuvenation, the reversion of aging aspects, is the desired outcome 
of the intervention. However, it is accompanied by accelerated aging, 
the negative effect of the young sharing their blood with the old. In 
our study, the rejuvenation effect was measured by comparing the 
expression levels in IA mice with those detected in HA mice. In turn, 
the accelerated aging effect was defined by the difference between 
IY and HY mice (Extended Data Fig. 8a). Healthy aging was defined as 
the comparison of mice from the TMS cohort aged 3 and 21 months 
(AGE), closely matching the age distribution of the parabiosis cohort at 
takedown. Clustering the samples using t-SNE revealed tissue identity 
as major driver of variance across the experimental groups (Extended 
Data Fig. 8b,c).

We assigned deregulated miRNAs to the following groups: either 
(1) uniquely deregulated in rejuvenation (REJ unique) or in accele
rated aging (ACC unique), or (2) deregulated in physiological aging 
as well as rejuvenation (REJ up and AGE down, REJ down and AGE up) 
or accelerated aging (AGE and ACC up/down). We found 233 uniquely 
deregulated miRNAs in rejuvenation and 43 in accelerated aging 

(Fig. 4a). Intriguingly, 17 age-related miRNAs were deregulated in the 
opposite direction in REJ. No miRNAs were deregulated in AGE and in  
the same direction in ACC, but the uniquely rejuvenated miRNAs  
were enriched in certain pathways in MAT (‘insulin resistance’, ‘adipo-
cytokine pathway’, ‘type 2 diabetes mellitus’), which again have a role 
in nutrient sensing.

For three global aging miRNAs, we discovered that changes in 
expression observed during healthy aging can be partially reversed in 
response to parabiosis. For miR-29c-3p, we measured a strong rejuvena-
tion effect in the liver, four times higher than the effect of accelerated 
aging (Fig. 4b). The other two global aging miRNAs miR-184-3p in the 
liver and miR-300-5p in GAT showed similar trends of reversed expres-
sion but with a lower magnitude (Extended Data Fig. 9a,b). Considering 
the pronounced globally aging versus local rejuvenation profile of 
miR-29c-3p, we chose to explore systemic effectors and mediators of 
these signals.

Expression of circulating mir-29 family increases with aging
MiRNAs can circulate in the plasma and EVs between organs. We 
thus assessed the abundance of miR-29c-3p in both plasma and the 
vesicle-bound fraction using an independent cohort23. Analyzing the 
expression at five timepoints across the lifespan from 2 to 18 months 
allowed us to correlate and compare the abundance of the miRNA in 
plasma and EVs. We observed an increase of miR-29c-3p expression 
correlated with age for both fractions (r = 0.56 (plasma) and 0.65 (EVs)). 
The share of positive global aging miRNAs detected as circulating  
was higher than the share of local aging miRNAs (38.3%) (Fig. 4c). This 
supports our hypothesis that miRNAs traveling via the shared circu
latory system could have a role in the positive effect of parabiosis.

MiR-29c-3p could regulate gene expression in pathways resulting 
in health improvements by entering the tissue via the blood in vesicles. 
Recently, miRNAs with certain sequences were shown to be more likely 
secreted in small EVs, and their capability to inhibit target genes in 
recipient cells is enhanced8. One so-called EXOmotif is CNGGNC, which 
is very similar to a sequence found in the mature mmu-miR-29c-3p 
CUGGUG. We performed luciferase assay experiments to validate 
our predictions for mir-29-family members on target genes related  
to aging. Lox and Adamts17 were validated as high confidence  
targets, and Vash1 was validated as a low confidence target (Extended 
Data Fig. 9c,d). Previously known targets from the literature  
(Eln, Col1a1, Col1a2, Col3a1 and Adam12), as well as Lox and Adamts17, 
are components in ECM processes (Fig. 4d), supporting our hypothesis 
that mir-29-family members have a crucial role in organismal aging  
due to their repressive regulatory function on these targets.

Discussion
We extended the TMS and parabiosis transcriptome datasets by bulk 
ncRNA sequencing and combined the data to highlight interactions of 
biomolecules and their functions to reveal potential regulatory mecha-
nisms of aging. We report organ-specific trajectories during aging for 
miRNAs using organism-wide clustering. We thereby observed enrich-
ment of miRNAs in pathways related to insulin resistance, especially 
for adipose tissue organ-specific miRNA trajectories. These results 
relate the miRNA expression changes to deregulated nutrient sensing.

Fig. 3 | mRNA target correlation analysis for global aging miRNAs. a, Venn 
diagram of predicted target transcripts of the five global aging miRNAs positively 
correlated with age in most tissues. Targets are identified via inverse correlation 
of expression values (Spearman’s rho < −0.4, Spearman’s statistics P < 0.05,  
two-sided); only miRNA–mRNA target predictions were selected that are 
correlated in at least two tissues for one of the five miRNAs. b, STRING network 
for all connected proteins encoded by target transcripts of the global aging 
miRNAs positively correlated with age (a); nodes are color coded for pathways  
in red for ‘ECM’, purple for ‘secreted’ and green for ‘dysregulated miRNA 
targeting in insulin PI3K-AKT signaling’. c, Venn diagram of predicted target 

transcripts of the three global aging miRNAs negatively correlated with age in 
most tissues. d, STRING network for all connected proteins encoded by target 
transcripts of the negatively with age correlated global aging miRNA negatively 
correlated with age (c); nodes are color coded for pathways in red for ‘immune 
receptor activity’, in purple for ‘cytokine activity’, in yellow for ‘hematopoietic 
cell lineage’, in pink for ‘adaptive immunity’ and in green for ‘immunoglobulin’. 
e, Expression of miR-29c-3p in reads per mapped million in the liver (r = 0.69), 
kidney (r = 0.56), lung (r = 0.51) and BAT (r = 0.48) over the mouse lifespan  
(mean per timepoint ± s.d.), created with BioRender.
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Moreover, we identified global aging miRNAs negatively and 
positively correlated with age. The increased expression levels of 
miR-29c-3p in age are partially reversible through heterochronic 

parabiosis. miR-29c is known as a negative regulator of RAG1 in B cells 
in mice and humans. Overexpression of miR-29c thereby reduces 
V(D)J recombination24, which is a major process shaping the immune 
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system repertoire, to support clearance of infectious agents, infected 
cells and cells on the verge of malignant transformation1. The global 
increase in this miRNA in several tissues and the already-known regu-
lation of the immune system suggest that the immune senescence 
aggravating the aging phenotype could be caused by this develop-
ment. Another age-related pathology is the process of cellular senes-
cence, which is regulated by the TGF-β/Smad pathway. TGF-β signaling 
involves miR-29-induced loss of H4K20me3 to promote senescence25. 
In a brain-specific miR-29 knockdown mouse, sex-specific effects on 
lifespan and reproduction were observed26. To prove that miR-29 has a 
causal role in processes responsible for cellular aging and rejuvenation, 
detailed knockdown or knockout experiments are needed.

Future studies should also focus on gathering single-cell miRNA 
data to explain which cell types are responsible for the expression 
of miRNA aging markers. High-throughput single-cell sequencing 
and vesicle sequencing could help us to distinguish between cellular  
miRNA expression and vesicles. MiRNAs can be transported via EVs 
and thereby mediate the regulation of aging-related processes27. 
Also, miRNA-mediated gene silencing, which we based our target-
ing analysis on and used for validation, is only one mode of action of  
gene expression regulation. Other modes of action worth mentioning 

are miRNA-mediated translational activation, miRNA-mediated 
transcriptional and post-transcriptional gene regulation within the 
nucleus28. A more detailed view of cell-type-specific and vesicular 
expression might explain why we found distinct miRNA trajectories 
of aging in adipose tissue while the strongest rejuvenation effects for 
global aging miRNAs, especially miR-29c-3p, occurred in the liver. 
The miRNA is known the be expressed highest in T and B cells24, but is  
also expressed in liver hepatocytes (Extended Data Fig. 10) and 
reported as a potential tumor suppressor in human29,30. Hence,  
revealing the responsible cell type could help illuminate which mecha-
nisms modulate miRNA expression levels. It is also necessary to discern 
which changes impact the transcriptome and proteome in different tis-
sues and cellular compositions, as miRNA targetomes can differ across 
cell types31. Currently, only a few different protocols for single-cell 
miRNA sequencing exist and no high-throughput gold standard is 
available32.

Another limitation of the study is the known issues of small RNA 
library production as adapter ligation bias, adapter dimer contamina-
tion, polymerase chain reaction (PCR) amplification bias, barcode bias 
and the influence of RNA degradation on ncRNA profiles33–35. The chal-
lenge of sequencing mainly fragments for six of the eight RNA classes is 
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related to these. Potentially, a major part of piRNA reads in the somatic 
tissues could have been derived from piRNA-sized fragments of other 
ncRNAs. These fragments are annotated in piRNA databases even 
though their biogenesis is perhaps independent of the PIWI pathway13. 
However, these piRNA-like small RNA are known to have important 
roles outside of the germline36. TRNA-derived small RNAs, which have a 
biological role by inhibiting translation or regulating gene expression, 
are studied likewise in aging and age-related diseases37. We decided 
not to exclude these data, so our study can be used as a reference for 
future studies aiming to analyze for instance tRNA-derived fragments 
or piRNA-like small RNAs in more detail. Of note, the fragments of 
longer ncRNAs are not necessarily surrogates of the full-length mature 
transcripts but can occur due to degradation processes. The biological 
function of respective mapping results remains to be explored.

In summary, our study provides a rich resource for biologists 
across many disciplines, as ncRNAs for all major organs across the 
entire lifespan of the mouse were sequenced. Reference data for healthy 
aging are important, because miRNAs are promising candidates for 
age-specific disease biomarkers10, and patterns of physiological aging 
must be defined not only in blood but also in every solid organ to  
promote the development of successful RNA-based therapies.
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Methods
Samples
Mouse tissues of the aging cohort were obtained, and RNA was iso-
lated as previously described5. From the National Institute on Ageing 
colony (Charles River) male and virgin female C57BL/6JN mice were 
shipped to the Veterinary Medical unit at the VA Palo Alto. The mice 
were housed on a 12-h light/dark cycle at 20–24 °C with food and water 
provided ad libitum. Humidity was monitored daily and between 23% 
and 55%. Mice from both cohorts were anesthetized with 2.5% vol/vol  
avertin, and mice were weighed and shaved. Blood was drawn via  
cardiac puncture before transcardial perfusion with 20 ml PBS. Dissec-
tion of organs was performed in the following order and then instantly 
frozen on dry ice: pancreas, spleen, brain, heart, lung, kidney, mesen-
teric adipose tissue, intestine (duodenum), gonadal adipose tissue, 
muscle (tibialis anterior), skin (dorsal), subcutaneous adipose tissue 
(inguinal pad), brown adipose tissue (interscapular pad), bone and 
bone marrow (femurs and tibiae). Bulk RNA samples of the hetero-
chronic parabiosis cohort consisting of male C57BL/6JN, C57BL/6J 
and C57BL/6-Tg(UBC-GFP)30Scha/J mice were collected as previously 
described22 (Supplementary Table 1). The 3- to 4.5-month-old and 
19-month-old mice were housed under the same conditions as the aging 
cohort mice. Suturing together the peritoneum of adjacent flanks of 
two mice, forming a continuous peritoneal cavity, accomplished the 
aging intervention parabiosis via the peritoneal method. To enable 
coordinated movement after surgery, adjacent knee joints and elbow 
joints were joined with nylon monofilament sutures, as well as skin 
with surgical autoclips. These procedures were conducted with aseptic 
conditions on heating pads, with mice under continuous isoflurane 
anesthesia. Mice were injected with Baytril (5 µg g−1), buprenorphine 
and 0.9% (wt/vol) sodium chloride to avoid infection, limit pain and 
promote hydration, as previously described in ref. 22. For 5 weeks, the 
pairs remained together, and organs were collected. First, heart, liver, 
kidney, then MAT and GAT, and finally limb muscle were collected in 
this order, all within 30–40 min. All animal care and procedures were 
carried out in accordance with institutional guidelines approved by 
the VA Palo Alto Committee on Animal Research (Protocol, LUO1736). 
RNA was isolated according to the manufacturer’s protocol with the 
miRNeasy Kit (Qiagen, 217084). All RNA samples were shipped to the 
Institute of Human Genetics. Samples of the TMS cohort were addition-
ally precipitated due to salt contamination. In brief, 150 ng of RNA was 
mixed with 3 M NAAC (pH 7.0) and 100% EtOH and incubated overnight 
at -20 °C. This was centrifuged at 20,817g at 4 °C for 60 min. Superna-
tant was discarded and the pellet was washed with 80% EtOH, followed 
by another centrifugation for 30 min (20,817g, 4 °C). Supernatant was 
again discarded, the pellet was dried on ice and resuspended in 50 µl 
1x TE buffer. Quality control of concentration was performed with 
the NanoDrop 2000 spectrophotometer (Thermo Fisher Scientific), 
and the RNA integrity was determined using the Agilent RNA 6000 
Nano Kit (Agilent Technologies, 5067-1512) for randomized samples of  
the cohorts.

Sample size, randomization and blinding
No sample size choice was performed before the study. During mouse 
dissection, order and preparation of 96-well plates for cDNA creation 
randomization was performed. No blinding was performed; the authors 
were aware of all data and metadata-related variables during the entire 
course of the study.

Library preparation
Small RNA library preparation was performed using the MGIEasy Small 
RNA Library Prep Kit (Item 940-000196-00) and the high-throughput 
MGI SP-960 sample prep system according to the manufacturer’s 
protocols. In brief, 3′- and 5′-adapters were ligated to the RNA, and 
reverse transcription (RT) was performed using an RT primer, in which 
sample-specific barcodes were incorporated. The resulting cDNA was 

amplified in a PCR with 21 cycles. The amplification product was size 
selected and purified using AMPure Beads XP (Beckman Coulter). The 
size of the purified PCR products was checked using an Agilent DNA 
1000 Kit (Agilent Technologies), and the concentration was determined 
using Qubit 1X dsDNA High Sensitivity (Thermo Fisher Scientific). For 
each library, 16 samples, barcoded with barcodes 1–4, 13–16 and 25–32, 
were pooled in an equimolar fashion at a concentration of 4.56 ng µl−1. 
Pooled libraries were circularized and sent for sequencing. A total of 
65 libraries consisting of 947 samples were analyzed in the project.

Sequencing and data analysis
Samples were sequenced single-ended on the BGISEQ500RS using 
the High-throughput Sequencing Set (SE50) (Small RNA) as a service 
provided by BGI. The sequencing data were processed with miRMaster 
2.0 using standard settings38 and mapped read percentages were gener-
ated. Data analysis was performed using RStudio Software v4.0.3 with 
the following packages: viper v1.26.0, data.table v1.14.2, ggrepel v0.9.1, 
ggvenn v0.1.9, M3C v1.14.0, ggridges v0.5.3, forcats v0.5.1, purrr v0.3.4, 
tidyr v1.2.0, tibble v3.1.6, ggplot2 v3.3.5, tidyverse v1.3.1, viridisLite 
v0.4.0, ColorBrewer v1.1-2, reshape2 v1.4.4, pheatmap v1.0.12, Mfuzz 
v2.52.0, DynDoc v1.70.0, widgetTools v1.70.0, e1071 v1.7-9, stringr 
v1.4.0, dplyr v1.0.8, readr v2.1.2 and Biobase v2.52.0.

Samples were excluded if fewer than 2 million aligned reads were 
detected while allowing one mismatch per read. Using Bowtie (v1.2.3.), 
reads were mapped against the RNA sequence derived from the respec-
tive databases (miRNAs: miRBase 22, tRNAs: GtRNAdb 18.1, piRNA: 
RNACentral 15, all other ncRNAs: Ensembl 100). Only the first paralog 
was retained for analysis, additional paralogs are listed in Supplemen-
tary Table 7. As the lengths of the mature ncRNAs matched with our 
sequencing read length exclusively for miRNAs and piRNAs39, we calcu-
lated detailed covered sequence length statistics. These analyses verify 
that not only random fragments were sequenced for the other ncRNA 
classes. Such fragments can occur as a result of a physiological process 
like tRNA-derived fragments and have a regulatory role in aging37 or 
can be products of postmortem RNA degradation. The amount and 
distribution of degradation fragments are highly influenced by the 
RNA quality35. Covered read length, reference read length, longest 
covered region, covered percentage reference length, longest mapping 
read, total reads mapping and average covered read length are listed 
in Supplementary Table 2 for all detected ncRNA. All mature ncRNAs 
are represented by their highest counting precursor.

Percentages of aligned reads per sample derived from the  
miRMaster analysis were used to calculate mean percentages within 
each tissue and each timepoint. As a first filtering step, piRNAs were 
filtered for those encoded in prepachytene genomic piRNA clusters as 
an established method to identify true somatic piRNAs14,15.

For global analyses (analyses independent of the organ), sam-
ples were filtered for 1 rpmm in at least one sample in the cohort. As 
a global analysis, we performed a t-SNE and a principal variance com-
ponent analysis (PVCA). All samples were clustered in an unweighted 
t-SNE with a seed set to 40 using the M3C package. A t-SNE is an opti-
mized dimensionality reduction method used for the visualization of 
high-dimensional data40. A PVCA was used to estimate the variability 
of biological and technical parameters. Data dimensionality is reduced 
through a principal component analysis.

For local analyses, tissue-specific patterns were considered, fur-
ther requiring that ncRNAs were expressed with 1 rpmm in at least 10% 
of the samples for each tissue. Percentages of counts per RNA class 
and tissue were calculated with the total number of counts within a 
tissue and the respective mean number of counts of the RNA classes. 
Percentages of counts per tissue and timepoint were calculated with 
the percentage of counts per sample after local filtering with the total 
RNA class counts. Timepoint percentages were calculated as means 
of the corresponding samples at each timepoint and in each tissue. 
Spearman rank correlations with age of each ncRNA expressed in each 
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tissue were calculated and illustrated in a density plot grouped by RNA 
class. Spearman rank correlation between miRNA expression and age 
was categorized into positively (r > 0.5) and negatively (r < −0.5) cor-
related and annotated with P values (Supplementary Table 8). Based 
on this categorization, the number of tissues in which a miRNA was 
(anti-) correlated with age was determined. MiRNA FCs in each tissue 
were computed with the mean expression of each later timepoint, 
always comparing against 3 months. Features with mean expression of  
0 for 3 months of age were excluded from this analysis. FCs lower or 
higher than 2/3 and 3/2, respectively, were considered deregulated.  
P values were only calculated with t-tests for comparisons with at  
least three samples per timepoint and adjusted for each tissue and  
timepoint separately with the Benjamini and Hochberg method. 
For the volcano plots, log2(FC) was calculated and all FC equal to 0 
were discarded. Volcano plots for each tissue were generated with 
the −log10(P values) versus the log2(foldchange) and colored by time-
point. Organism-wide miRNA trajectory clustering was performed 
using the Mfuzz package, which clustered based on fuzzy c-means 
algorithms, and the number of clusters c between 2 and 20 was indi-
vidually determined for each clustering using the minimum centroid 
distance measure. For the organism-wide clustering of the z-scored 
miRNAs over all tissues, 20 was determined as optimal. A cluster was 
deemed tissue-specific if at least 30% of the miRNAs in a cluster were 
tissue-specific.

The coding transcriptome data for the same samples were 
obtained from the previous study5. mRNA targets of miRNAs were iden-
tified via negative correlation (P < 0.05, r < −0.4). For the local miRNA–
mRNA interaction analysis, miRNAs exceeding the age-correlation 
interval between −0.5 and 0.5 were considered. The more stringent 
filtering approach for aging miRNAs was chosen to discover a small 
set of strong candidates from the millions of possible miRNA–mRNA 
interactions. For the global analysis, we considered targets inversely 
correlated with either the positive global aging miRNAs (miR-29a-3p, 
miR-29c-3p, miR-155-5p, miR-184-3p and miR-1895) or the negative 
global aging miRNAs (miR-300-3p, miR-487b-3p and miR-541-5p) in at 
least two tissues, to obtain the filtered target gene set. Using STRING, 
the protein–protein association network database20, we illustrated 
known connections between proteins encoded by the predicted mRNA 
targets of the global miRNAs.

For pathway enrichment analysis, an overrepresentation analysis 
(ORA) was performed with the target mRNAs of global miRNAs using 
GeneTrail 3.2 (ref. 41). An ORA was performed to identify the pathways 
negatively and positively regulated locally in all tissues through the 
local aging miRNAs. The standard parameters were used, with FDR 
adjustment and 0.001 as significance level. Heatmaps for positive and 
negative regulation of miRNA on target mRNA expression were gener-
ated with the top 20 and 25 nondisease-related pathways, respectively, 
(lowest P values) regulated in most tissues.

For the parabiosis cohort, sequenced samples were analyzed with 
the same filtering criteria as TMS samples. We detected 50,776 ncRNAs 
in the raw reads of this cohort and we filtered 5,248 abundant ncRNAs 
for the global analysis (t-SNE). To quantify the effects of parabiosis in 
each tissue, FCs were calculated between IY and HY mice for the effect 
termed accelerated aging (ACC) and between IA and HA mice for the 
effect termed REJ. The effects of physiological aging (AGE) were defined 
as the FC between 3- and 21-month-old mice from the TMS cohort, 
corresponding to the ages of young and aged mice in the parabiosis 
experiment. As previously, FCs exceeding the interval of 2/3 and 3/2 
and a significant P value (P < 0.05) were considered as deregulated.

Expression data from the EVs study were obtained as previously 
reported in ref. 23. miRNAs were considered as expressed if they were 
detected with at least 1 rpmm for more than 10% of the samples of one 
group. The intersection between miRNAs expressed in circulating 
plasma and EVs and either global or local aging miRNAs was determined 
and visualized as a Venn diagram.

Cell lines
The HEK 293T (ACC 635) was purchased from the German collec-
tion of microorganisms and cell cultures (Deutsche Sammlung von  
Mikroorganismen und Zellkulturen, DSMZ). STR fingerprinting  
by DSMZ confirmed the authenticity of the cell line. The cells were 
cultivated with DMEM (Life Technologies) supplemented with  
Penicillin (100 U ml−1), Streptomycin (100 µg ml−1) and 10 % (vol/vol) FCS 
and passaged two times a week for not longer than 3 months.

miRNA expression plasmid and 3’UTR reporter plasmids
The cloning of the pSG5-miR-29a expression plasmid was described 
previously42. Targets for reporter plasmids were selected based on 
the predicted target genes for miR-29 from Fig. 3a, as miR-29a-3p and 
miR-29c-3p have the same seed sequence. Only target genes with at 
least a 7mer binding site and the lowest possible hamming distance 
between human and mouse 3’UTR and binding sites were selected. The 
3’UTR reporter constructs were synthesized and cloned into reporter 
plasmid pMIR-RNL-TK using SpeI and SacI restriction sites by GeneArt 
(Life Technologies GmbH). The reporter plasmid pMIR-COL1A2, which 
was identified by ref. 43 as direct target gene of miR-29a-3p, served as 
positive control. The results of the control experiments are given in 
Extended Data Fig. 7d. The complete list of all tested 3′UTR sequences, 
including the respective NM accession number, is given in Supplemen-
tary Table 9.

High-throughput miRNA interaction reporter assay
High-throughput analysis of reporter constructs was conducted by a 
liquid handling system and described previously in ref. 44. In brief, HEK 
293T cells were seeded at 3.2 × 104 cells per well in a 96-well plate using 
a liquid handling system epMotion 5,075 (Eppendorf). Twenty-four 
hours after seeding, cells were transfected with 50 ng per well of either 
reporter plasmid pMIR-RNL-TK, with or without insert, and 200 ng per 
well of miRNA expression plasmid pSG5-miR-29a or the empty expres-
sion vector pSG5. Forty-eight hours post-transfection, HEK 293T cells 
were lysed and the lysates were measured using a GloMax Navigator 
microplate luminometer (Promega) using Luciferase substrates of the 
Dual-Luciferase Reporter Assay System (Promega). High-throughput 
miRNA interaction reporter assay was conducted four times in  
technical duplicates.

Reporting summary
Further information on research design is available in the Nature  
Portfolio Reporting Summary linked to this article.

Data availability
All data generated in this study are freely accessible from the Gene 
Expression Omnibus (GSE217458, GSE222857). Databases used in 
this study are miRBase 22 (https://www.mirbase.org/), GtRNSdb 18.1 
(http://gtrnadb.ucsc.edu/), RNACentral 15 (https://rnacentral.org/) 
and Ensembl 100 (https://useast.ensembl.org/index.html).

Code availability
All analyses have been carried out using freely available software pack-
ages. Custom code used to analyze the RNA-seq data and datasets 
generated and/or processed in the current study is available from the 
corresponding authors upon request.
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Extended Data Fig. 1 | Non-coding RNA read distribution. (A) Averaged 
percentage of mapped reads for all RNA classes over all TMS cohort samples. (B) 
Mapped RNA class read distribution in percent for each tissue, sorted descending 
by miRNA share. (C) Covered length analysis: Percentage covered of reference 
sequence with mapped reads versus sequence reference length, colored by RNA 

class for all ncRNAs detected in the raw reads for the TMS cohort (D) Percentage 
of longest covered region calculated with the maximal connected read length 
versus sequence reference length for all ncRNAs detected in the raw reads for the 
TMS cohort.
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Extended Data Fig. 2 | Variance analysis for ncRNA expression levels. (A) 
Principal variance component analysis of biological components (sex, age, 
tissue, mouse) and technical components (barcode, plate); factors connected 
with ':' were linearly combined. (B) Visualization of all samples of the TMS cohort 

over all abundant non-coding RNAs as a t-SNE, colored by sex. (C) Histogram 
of mean variance calculated in abundant count percentages of all RNA classes. 
Calculations for each tissue after local filtering over the time course. Threshold 
determined at 4.5% to separate highly variable and stable tissues.

http://www.nature.com/naturebiotechnology


Nature Biotechnology

Article https://doi.org/10.1038/s41587-023-01751-6

0.00

0.25

0.50

0.75

1.00

0 10 20

Kidney

0.00

0.25

0.50

0.75

1.00

0 10 20

Spleen

0.00

0.25

0.50

0.75

1.00

0 10 20

Small Intestine

0.00

0.25

0.50

0.75

1.00

0 10 20

Limb Muscle

0.00

0.25

0.50

0.75

1.00

0 10 20

Brain

0.00

0.25

0.50

0.75

1.00

0 10 20

Skin

0.00

0.25

0.50

0.75

1.00

0 10 20

SCAT

0.00

0.25

0.50

0.75

1.00

0 10 20

Pancreas

0.00

0.25

0.50

0.75

1.00

0 10 20

MAT

0.00

0.25

0.50

0.75

1.00

0 10 20

Marrow

0.00

0.25

0.50

0.75

1.00

0 10 20

Lung

0.00

0.25

0.50

0.75

1.00

0 10 20

Heart

0.00

0.25

0.50

0.75

1.00

0 10 20

GAT

0.00

0.25

0.50

0.75

1.00

0 10 20

Bone

0.00

0.25

0.50

0.75

1.00

0 10 20

BAT

0.00

0.25

0.50

0.75

1.00

0 10 20

Liver

Extended Data Fig. 3 | Mean count percentages per RNA class over the lifespan in all organs. Mean count percentages per RNA class and over all timepoints, for 
each tissue in the TMS dataset. Calculations based on count shares per sample after local filtering.
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Extended Data Fig. 4 | Mean expression vs. log2 FC in all tissues for all ncRNAs. Log2 foldchanges (each timepoint vs 3 months) compared to mean expression 
values in reads per million mapped of all non-coding RNA (A) and only miRNA (B), red lines as reference for 2/3 and 3/2, colored by timepoint (as indicated in Fig. 1a).
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Extended Data Fig. 5 | Volcano plots for comparison 3 m to all later timepoints per organ. Volcano plots for each tissue, colored by timepoints (color code as 
indicated in Fig. 1a). Log2(FC) are plotted versus -log10(p-values) calculated in a two-sided t-test.
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Extended Data Fig. 6 | Whole organism miRNA aging trajectory clustering 
and enriched pathways of mRNAs targeted by local aging miRNAs. (A) Fuzzy 
c-means organism-wide z-scored trajectory clustering for all miRNAs in all tissues 
into 20 clusters. (B) Top 20 non-disease-related locally enriched significant 
pathways overlapping between tissues and mRNA targets identified via negative 
correlation with the aging miRNA set (r > 0.5, with age) in each individual tissue. 

(C) Top 25 non-disease-related locally enriched significant pathways overlapping 
between tissues. mRNA targets identified via negative correlation with miRNA 
correlated negatively with aging (r < -0.5) in each individual tissue (identified via 
overrepresentation analysis, hypergeometric test, two-sided, adjustment FDR, 
t-test < 0.001).
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Extended Data Fig. 7 | miR-29c-3p expression per tissue. Expression of global aging miRNA miR-29c-3p as reads per mapped million for all tissues at all measured 
timepoints.
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Extended Data Fig. 8 | Experimental design for the parabiosis study and 
variance analysis of samples. (A) Schematic plot of the experimental aging 
intervention and heterochronic parabiosis. Visualization of all samples of the 

parabiosis cohort over all detected non-coding features in a t-SNE, colored by 
tissue (B, color code as indicated in Fig. 1a) and treatment group (C, color code as 
indicated in Fig. 4b).
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Extended Data Fig. 9 | See next page for caption.
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Extended Data Fig. 9 | Observed rejuvenation effects of global aging miRNAs 
and validation experiments for predicted targets of miR-29c-3p. z-scored 
expression in the healthy aging cohort (TMS) for every timepoint and z-scored 
expression in the parabiosis cohort for the four different groups (IY, HY, HA and 
IA) for miR-184-3p in the liver (A) and miR-300-5p in GAT (B). The first to the third 
quartile are covered within the boxes with the median value shown as line inside 
the box. Maximum and minimum values are shown as whiskers or values up to 
1.5-times the interquartile range above and below the first or third quartile if 
outliers are present. (C) Measured RLU (relative light unit) in percent for all target 
constructs for miR-29; reduction to under 80% determines a high confidence 
target, reduction between 80-90% low confidence target (n = 4 biologically 
independent experiments for each target, each as technical duplicates). Color 
coded in dark green for significant reduction with a p-value ≤ 0.01 (ADAMTS17_1: 

0,0000004, ADAMTS17_2: 0,00000007, ADAM12_1: 0,00001, LOX_2: 0,0006, 
LOX_3: 0,000000001, VASH1_2: 0,0067), light green for significant reduction 
with a p-value ≤ 0.05 (AD-AM12_2: 0,0306) and in light brown for non-significant 
reduction with a p-value ≥ 0.05 (n.s; APLNR: 0,1485, LOX_1: 0,1892, VASH1_1: 
0,5457). P-values were calculated by an unpaired t-test. Data are shown as 
mean ± SD. (D) Control experiment results luciferase assay, negative control: 
vector alone and vector with miRNA and positive control with vector (pMIR+ 
pSG5; pMIR+miR-29a, PC miR-29a-3p + pSG5) and positive control (PC miR-29a-
3p + miR-29a) (n = 4 biologically independent experiments, each as technical 
duplicates; *** = p-value ≤ 0.001, n.s. = p-value ≥ 0.05). P-values were calculated 
by a Welsh’s t-test (pMIR+pSG5 vs. pMIR+miR-29a = 0,6314; PC miR-29a-3p+miR-
29a vs. PC miR-29a-3p + pSG5 p-value < 0,0001; PC miR-29a-3p+miR-29a vs. 
pMIR+miR-29a p-value < 0,0001.) Data are shown as mean ± SEM.
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Extended Data Fig. 10 | Human miR-29c-3p expression in cell lines. Expression of hsa-miR-29c-3p in human cell lines as normalized DESeq2 counts, Hepatocytes 
highlighted in red, data re-analysis from publication.
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