51 research outputs found
Isogenic Pairs of hiPSC-CMs with Hypertrophic Cardiomyopathy/LVNC-Associated ACTC1 E99K Mutation Unveil Differential Functional Deficits
Hypertrophic cardiomyopathy (HCM) is a primary disorder of contractility in heart muscle. To gain mechanistic insight and guide pharmacological rescue, this study models HCM using isogenic pairs of human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) carrying the E99K-ACTC1 cardiac actin mutation. In both 3D engineered heart tissues and 2D monolayers, arrhythmogenesis was evident in all E99K-ACTC1 hiPSC-CMs. Aberrant phenotypes were most common in hiPSC-CMs produced from the heterozygote father. Unexpectedly, pathological phenotypes were less evident in E99K-expressing hiPSC-CMs from the two sons. Mechanistic insight from Ca2+ handling expression studies prompted pharmacological rescue experiments, wherein dual dantroline/ranolazine treatment was most effective. Our data are consistent with E99K mutant protein being a central cause of HCM but the three-way interaction between the primary genetic lesion, background (epi)genetics, and donor patient age may influence the pathogenic phenotype. This illustrates the value of isogenic hiPSC-CMs in genotype-phenotype correlations
Quantifiable correlation of ToFâSIMS and XPS data from polymer surfaces with controlled amino acid and peptide content
Peptide-coated surfaces are widely employed in biomaterial design, but quantifiable correlation between surface composition and biological response is challenging due to, for example, instrumental limitations, a lack of suitable model surfaces or limitations in quantitatively correlating data from different surface analytical techniques. Here, we first establish a reference material that allows control over amino acid content. Reversible addition-fragmentation chain-transfer (RAFT) polymerisation is used to prepare a copolymer containing alkyne and furan units with well-defined chain length and composition. Huisgen Cu(I)-catalysed azide-alkyne cycloaddition reaction is used to attach the model azido-polyethyleneglycol-amide-modified pentafluoro-l-phenylalanine to the polymer. Different compositional ratios of the polymer provide a surface with varying amino acid content that is analysed by X-ray photoelectron spectroscopy (XPS) and time-of-flight secondary ion mass spectrometry (ToF-SIMS). Nitrogen-related signals are compared with fluorine signals from both techniques. Fluorine and nitrogen signals from both techniques are found to be related to the copolymer compositions, but the homopolymer data deviate from this trend. The approach is then translated to a heparin-binding peptide that supports cell adhesion. Human embryonic stem cells cultured on copolymer surfaces presenting different amounts of heparin-binding peptide show strong cell growth while maintaining pluripotency after 72âh of culture. The early cell adhesion at 24âh can be correlated to the logarithm of the normalised CH4N+ ion intensity from ToF-SIMS data, which is established as a suitable and generalisable marker ion for amino acids and peptides. This work contributes to the ability to use ToF-SIMS in a more quantitative manner for the analysis of amino acid and peptide surfaces
Constitutive intestinal NF-ÎșB does not trigger destructive inflammation unless accompanied by MAPK activation
Constitutive NF-ÎșB activation in IECs induces inflammatory cytokines and chemokines in the lamina propria, but does not result in overt tissue damage unless acute inflammatory insults are present, causing TNF-dependent destruction and barrier disruption
Screening ethnically diverse human embryonic stem cells identifies a chromosome 20 minimal amplicon conferring growth advantage
The International Stem Cell Initiative analyzed 125 human embryonic stem (ES) cell lines and 11 induced pluripotent stem (iPS) cell lines, from 38 laboratories worldwide, for genetic changes occurring during culture. Most lines were analyzed at an early and late passage. Single-nucleotide polymorphism (SNP) analysis revealed that they included representatives of most major ethnic groups. Most lines remained karyotypically normal, but there was a progressive tendency to acquire changes on prolonged culture, commonly affecting chromosomes 1, 12, 17 and 20. DNA methylation patterns changed haphazardly with no link to time in culture. Structural variants, determined from the SNP arrays, also appeared sporadically. No common variants related to culture were observed on chromosomes 1, 12 and 17, but a minimal amplicon in chromosome 20q11.21, including three genes expressed in human ES cells, ID1, BCL2L1 and HM13, occurred in >20% of the lines. Of these genes, BCL2L1 is a strong candidate for driving culture adaptation of ES cells
Ledipasvir and Sofosbuvir Plus Ribavirin for Treatment of HCV Infection in Patients With Advanced Liver Disease
BACKGROUND & AIMS: There are no effective and safe treatments for chronic hepatitis C virus (HCV) infection of patients who have advanced liver disease.
METHODS: In this phase 2, open-label study, we assessed treatment with the NS5A inhibitor ledipasvir, the nucleotide polymerase inhibitor sofosbuvir, and ribavirin in patients infected with HCV genotypes 1 or 4. Cohort A enrolled patients with cirrhosis and moderate or severe hepatic impairment who had not undergone liver transplantation. Cohort B enrolled patients who had undergone liver transplantation: those without cirrhosis; those with cirrhosis and mild, moderate, or severe hepatic impairment; and those with fibrosing cholestatic hepatitis. Patients were assigned randomly (1:1) to receive 12 or 24 weeks of a fixed-dose combination tablet containing ledipasvir and sofosbuvir, once daily, plus ribavirin. The primary end point was sustained virologic response at 12 weeks after the end of treatment (SVR12).
RESULTS: We enrolled 337 patients, 332 (99%) with HCV genotype 1 infection and 5 (1%) with HCV genotype 4 infection. In cohort A (nontransplant), SVR12 was achieved by 86%-89% of patients. In cohort B (transplant recipients), SVR12 was achieved by 96%-98% of patients without cirrhosis or with compensated cirrhosis, by 85%-88% of patients with moderate hepatic impairment, by 60%-75% of patients with severe hepatic impairment, and by all 6 patients with fibrosing cholestatic hepatitis. Response rates in the 12-Â and 24-week groups were similar. Thirteen patients (4%) discontinued the ledipasvir and sofosbuvir combination prematurely because of adverse events; 10 patients died, mainly from complications related to hepatic decompensation.
CONCLUSION: The combination of ledipasvir, sofosbuvir, and ribavirin for 12 weeks produced high rates of SVR12 in patients with advanced liver disease, including those with decompensated cirrhosis before and after liver transplantation. ClinTrials.gov: NCT01938430
Sodium fast reactor safety and licensing research plan. Volume II.
Expert panels comprised of subject matter experts identified at the U.S. National Laboratories (SNL, ANL, INL, ORNL, LBL, and BNL), universities (University of Wisconsin and Ohio State University), international agencies (IRSN, CEA, JAEA, KAERI, and JRC-IE) and private consultation companies (Radiation Effects Consulting) were assembled to perform a gap analysis for sodium fast reactor licensing. Expert-opinion elicitation was performed to qualitatively assess the current state of sodium fast reactor technologies. Five independent gap analyses were performed resulting in the following topical reports: (1) Accident Initiators and Sequences (i.e., Initiators/Sequences Technology Gap Analysis), (2) Sodium Technology Phenomena (i.e., Advanced Burner Reactor Sodium Technology Gap Analysis), (3) Fuels and Materials (i.e., Sodium Fast Reactor Fuels and Materials: Research Needs), (4) Source Term Characterization (i.e., Advanced Sodium Fast Reactor Accident Source Terms: Research Needs), and (5) Computer Codes and Models (i.e., Sodium Fast Reactor Gaps Analysis of Computer Codes and Models for Accident Analysis and Reactor Safety). Volume II of the Sodium Research Plan consolidates the five gap analysis reports produced by each expert panel, wherein the importance of the identified phenomena and necessities of further experimental research and code development were addressed. The findings from these five reports comprised the basis for the analysis in Sodium Fast Reactor Research Plan Volume I
Writing Secure Programs, An Interview with Steve Lipner, by Peter J. Denning
The article of record as published may be found at http://dx.doi.org/10.Editor's Introduction: Protecting computing systems and networks from attackers and data theft is an enormously complicated problem. The individual operating systems are complex (typically more than 40 million lines of code), they are connected to an enormous Internet (on order of 1 billion hosts), and the whole network is heavily populated (more than 2.3 billion users). Hunting down and patching vulnerabilities is a losing game. Steve Lipner, partner director of program management in Trustworthy Computing Security at Microsoft, has been involved in securing systems for nearly 40 years and has learned how to make security better. His responsibilities encompass Microsoftâs process for assuring the security of its products and online servicesâ the Security Development Lifecycle (SDL)âas well as a variety of programs related to government evaluations of the security and integrity of Microsoft products and services. Lipner has been a consultant, researcher, development manager, and corporate executive in what we refer to today as âcyber security.â Here he shares his experiences in what has and has not worked. He sees by far the best results when programmers adopt secure development practices. (Peter J. Denning Editor-in-Chief
- âŠ