47 research outputs found

    Tracking of physical activity behaviours during childhood, adolescence and young adulthood: A systematic review

    Get PDF
    Aim: To conduct a systematic literature search to identify studies providing data on the tracking of physical activity behaviours in children and young people. Methods: Seven bibliographic databases were searched systematically in July-August 2008 using search strategies built around three groups of keywords: physical activity, study type and young people. Studies included in the review had to be prospective, longitudinal studies that reported data on any physical activity behaviour for at least two time-points (two or more years apart). The study was restricted to community-based populations who were 18 years or younger at baseline. Two reviewers independently undertook data extraction from all suitable papers, and performed quality appraisal.  Results: The database search yielded a total of 10,685 titles, from which 59 were included in the review. There were only 15 papers that specifically examined tracking of physical activity behaviours. Tracking co-efficients ranged from -0.11 to 0.59; all indicating low or moderate tracking of physical activity, with no clear differences between males and females. Moderate tracking was observed in studies where follow-up was five years or less. The highest degree of tracking was observed for club sport participation and even over long follow-up, sports training and organized physical activity showed higher tracking than other physical activity behaviours. Physical activity levels declined consistently during adolescence, as did sports participation. However, the decrease in physical activity was less marked among those who participated in sports in early adolescence, and those who participated with parents or at high levels. The likelihood that young people continue with specific sports over short periods is generally low, but the likelihood that they continue to take part in any team, individual or vigorous activity is higher. There were no studies that evaluated the effect of sports participation during early childhood on later physical activity behaviours. Conclusions: In general, tracking of physical activity behaviours between childhood, adolescence and young adulthood is low, although there is limited evidence. The study has confirmed that levels of physical activity decrease with age, indicating the need to develop and test interventions to promote activity. Research is also needed to explore the reasons why adolescents and young adults give up physical activity and participation in sports. However, several factors in adolescence (participation in organised sports, participation with parents and high levels of participation) do lessen the chances of being inactive at a later age

    A biological and chemical approach to restoring water quality: A case study in an urban eutrophic pond

    Get PDF
    Efforts to improve water quality of eutrophic ponds often involve implementing changes to watershed management practices to reduce external nutrient loads. While this is required for long-term recovery and prevention, eutrophic conditions are often sustained through the recycling of internal nutrients already present within the waterbody. In particular, internal phosphorus bound to organic material and adsorbed to sediment has the potential to delay lake recovery for decades. Thus, pond and watershed management techniques are needed that not only reduce external nutrient loading but also mitigate the effects of internal nutrients already present. Therefore, our objective was to demonstrate a biological and chemical approach to remove and sequester nutrients present and entering an urban retention pond. A novel biological and chemical management technique was designed by constructing a 37 m2 (6.1 m × 6.1 m) floating treatment wetland coupled with a slow-release lanthanum composite inserted inside an airlift pump. The floating treatment wetland promoted microbial denitrification and plant uptake of nitrogen and phosphorus, while the airlift pump slowly released lanthanum to the water column over the growing season to reduce soluble reactive phosphorus. The design was tested at the microcosm and field scales, where nitrate-N and phosphate-P removal from the water column was significant (α = 0.05) at the microcosm scale and observed at the field scale. Two seasons of field sampling showed both nitrate-N and phosphate-P concentrations were reduced from 50 μg L–1 in 2020 to \u3c10 μg L–1 in 2021. Load calculations of incoming nitrate-N and phosphate-P entering the retention pond from the surrounding watershed indicate the presented biological-chemical treatment is sustainable and will minimize the effects of nutrient loading from nonpoint source pollution

    Developing persulfate-activator soft solid (PASS) as slow release oxidant to remediate phenol-contaminated groundwater

    Get PDF
    The research objective was to develop a persulfate-activator soft solid (PASS) as a biodegradable slow-release oxidant to treat phenol-contaminated groundwater. PASS was prepared by graft copolymerization of acrylic acid (AA) and acrylamide (AM) onto 1% (w/v) sodium alginate mixed with 500 mg L−1 sodium persulfate and 5 mg L−1 ferrous sulfate. The physical and chemical properties of PASS were characterized using scanning electron microscopy, Fourier transform infrared spectroscopy, thermogravimetric analysis, differential scanning calorimetry, the water content and swelling ratio. Various variables, including the ratio of AA/AM, pH, temperature and the type of groundwater cations affecting PS release, were investigated. The maximum PS release in DI water was 98% in the ratio of PASS 1 (AA/AM, 75/25), 96% at pH 3, 83% at 25 °C, and 80% with Na+. The major factors controlling PS release were the AA/AM ratio and pH. PASS 1 can be stable in size and shape for 6–8 days and completely degraded within 34 days. The degradation rates of 10 mgL−1 phenol using PASS produced the highest kobs values for each variable at a ratio of PASS 1 (k = 0.1408 h−1), pH 7 (k = 0.1338 h−1), 25 °C (k = 0.1939 h−1), and Ca2+ (k = 0.1336 h−1). The temperature of the groundwater was key to driving the reaction between PS and phenol. PASS 1 was applied in simulated phenol-contaminated groundwater via horizontal tanks containing Ottawa sand. The results indicated 93.2% phenol removal within 72 h in a narrow horizontal flow tank and 41.7% phenol removal in a wide horizontal flow tank with aeration

    Literature Review: Global Neonicotinoid Insecticide Occurrence in Aquatic Environments

    Get PDF
    Neonicotinoids have been the most commonly used insecticides since the early 1990s. Despite their efficacy in improving crop protection and management, these agrochemicals have gained recent attention for their negative impacts on non-target species such as honeybees and aquatic invertebrates. In recent years, neonicotinoids have been detected in rivers and streams across the world. Determining and predicting the exposure potential of neonicotinoids in surface water requires a thorough understanding of their fate and transport mechanisms. Therefore, our objective was to provide a comprehensive review of neonicotinoids with a focus on their fate and transport mechanisms to and within surface waters and their occurrence in waterways throughout the world. A better understanding of fate and transport mechanisms will enable researchers to accurately predict occurrence and persistence of insecticides entering surface waters and potential exposure to non-target organisms in agricultural intensive regions. This review has direct implications on how neonicotinoids are monitored and degraded in aquatic ecosystems. Further, an improved understanding of the fate and transport of neonicotinoids aide natural resource practitioners in the development and implementation of effective best management practices to reduce the potential impact and exposure of neonicotinoids in waterways and aquatic ecosystems

    A practical guide to analyzing the force-time curve of isometric tasks in Excel

    Get PDF
    Understanding force generating capabilities of athletes is an important facet of strength diagnostics. The utilisation of isometric tasks such as the isometric squat and isometric mid-thigh pull are therefore popular methods used to gain a deeper understanding of as to what strength characteristics have changed over a given period. This article aims to provide information on how to understand and analyse the force time curve of isometric tasks in Microsoft Excel, thus providing practitioners an inexpensive and accessible alternative to readily available software on the market

    Using slow-release permanganate candles to remediate PAH-contaminated water

    Get PDF
    Surface waters impacted by urban runoff in metropolitan areas are becoming increasingly contaminated with polycyclic aromatic hydrocarbons (PAHs). Slow-release oxidant candles (paraffin–KMnO4) are a relatively new technology being used to treat contaminated groundwater and could potentially be used to treat urban runoff. Given that these candles only release permanganate when submerged, the ephemeral nature of runoff events would influence when the permanganate is released for treating PAHs. Our objective was to determine if slow-release permanganate candles could be used to degrade and mineralize PAHs. Batch experiments quantified PAH degradation rates in the presence of the oxidant candles. Results showed most of the 16 PAHs tested were degraded within 2–4 h. Using 14C-labled phenanthrene and benzo(a)pyrene, we demonstrated that the wax matrix of the candle initially adsorbs the PAH, but then releases the PAH back into solution as transformed, more water soluble products. While permanganate was unable to mineralize the PAHs (i.e., convert to CO2), we found that the permanganate-treated PAHs were much more biodegradable in soil microcosms. To test the concept of using candles to treat PAHs in multiple runoff events, we used a flow-through system where urban runoff water was pumped over a miniature candle in repetitive wet–dry, 24-h cycles. Results showed that the candle was robust in removing PAHs by repeatedly releasing permanganate and degrading the PAHs. These results provide proof-of-concept that permanganate candles could potentially provide a low-cost, low-maintenance approach to remediating PAH-contaminated water

    Using Slow-Release Permanganate Candles to Remove TCE from a Low Permeable Aquifer at a Former Landfill

    Get PDF
    Past disposal of industrial solvents into unregulated landfills is a significant source of groundwater contamination. In 2009, we began investigating a former unregulated landfill with known trichloroethene (TCE) contamination. Our objective was to pinpoint the location of the plume and treat the TCE using in situ chemical oxidation (ISCO). We accomplished this by using electrical resistivity imaging (ERI) to survey the landfill and map the subsurface lithology. We then used the ERI survey maps to guide direct push groundwater sampling. A TCE plume (100-600 µg L-1) was identified in a low permeable silty-clay aquifer (Kh = 0.5 m d-1) that was within 6 m of ground surface. To treat the TCE, we manufactured slow-release potassium permanganate candles (SRPCs) that were 91.4 cm long and either 5.1 cm or 7.6 cm in dia. For comparison, we inserted equal masses of SRPCs (7.6-cm vs 5.1-cm dia) into the low permeable aquifer in staggered rows that intersected the TCE plume. The 5.1-cm dia candles were inserted using direct push rods while the 7.6-cm SRPCs were placed in 10 permanent wells. Pneumatic circulators that emitted small air bubbles were placed below the 7.6-cm SRPCs in the second year. Results 15 months after installation showed significant TCE reductions in the 7.6-cm candle treatment zone (67-85%) and between 10 to 66% decrease in wells impacted by the direct push candles. These results support using slow-release permanganate candles as a means of treating chlorinated solvents in low permeable aquifers. Includes Supplementary Materials
    corecore