14 research outputs found

    Entwicklung elektrochemischer Biosensoren fĂĽr die Tumordiagnostik

    Get PDF
    Die vorliegende Arbeit befasst sich mit der Entwicklung und Anwendung elektrochemischer Biosensoren zur Erweiterung oder zum Ersatz herkömmlicher Diagnostikverfahren. Als Basis für die Biosensoren wurden Elektrodenarraychips entworfen und im Reinraum gefertigt. Die als 9WPtE bezeichneten Elektrodenarrays waren aus 3 x 3 Elektrodenpaaren im 96-well-Maßstab (ANSI-Standard) aufgebaut. Jedes Elektrodenpaar bestand aus einer kreisrunden Arbeitselektrode mit einem Durchmesser von 1,9 mm und einer Gegenelektrode als offenem Kreisring um die Arbeitselektrode mit einem Durchmesser von 7 mm. Außerhalb des Reinraums wurden separate Messkammern und Ag/AgCl-Referenzelektroden integriert. Sowohl das Referenzsystem als auch die Signalqualität der 9WPtE-Elektrodenarraychips wurden mittels Zyklovoltammetrie, Impedanzspektroskopie und Rasterkraftmikroskopie analysiert und anhand dieser Untersuchungen optimiert. Das Augenmerk lag hierbei auf den Produktionsprozessen zur Herstellung der Elektrodenarraychips, auf den Elektrolytbedingungen für die elektrochemischen Messungen und auf der Recyclebarkeit der Chips. Die Funktionalisierung der Arbeitselektroden der 9WPtE-Chips erfolgte mit sich selbst-organisierenden Schichten aus Thiolen. An die Thiole wurden mittels Chemoligation die biologischen Erkennungskomponenten kovalent gekoppelt. Mit dem 9WPtE-Elektrodenarray wurde auf diese Weise ein funktionsfähiger kompetitiver Immunosensoren gegen den Tumormarker Tenascin C entwickelt. Außerdem wurden der 9WPtE-Chip und ein zusätzlich entwickelter Durchflusssensor, basierend auf dem Prinzip des 9WPtE, genutzt, um die Möglichkeit der Detektion ganzer eukaryotischer Zellen zu untersuchen

    Controlling the behavior of single live cells with high density arrays of microscopic OLEDs

    Get PDF
    This work was supported in part by the Scottish Funding Council (via SUPA) and the Human Frontier Science Program (HFSP). The authors thank Andrew Morton (U St Andrews) for fruitful discussions.Microarrays of OLEDs are used to ­optically control the locomotion of individual cells in real time. Close contact (<2 μm) between OLEDs and the aqueous cell culture medium is facilitated by high-performance thin-film encapsulation. This work paves the way for using OLED light sources to control and study neuronal activity and cell signaling with extreme spatial and temporal resolution.PostprintPeer reviewe

    Strong coupling in fully tunable microcavities filled with biologically-produced fluorescent proteins

    Get PDF
    We thank C. Schneider for fruitful discussions and A. Clemens and K. Ostermann (TU Dresden, Germany) for technical support with protein preparation. We acknowledge financial support from the European Research Council (ERC StG ABLASE, 640012), the Scottish Funding Council (via SUPA), the European Union Marie Curie Career Integration Grant (PCIG12-GA-2012-334407) and the EPSRC Hybrid Polaritonics program grant (EP/M025330/1). M.S. acknowledges funding from the German Science Foundation (DFG) through a Research Fellowship (SCHU 3003/1-1) and from the European Commission for a Marie Sklodowska-Curie Individual Fellowship (659213). S.H. gratefully acknowledges support by the Royal Society and the Wolfson Foundation.Strong coupling between cavity photons and excited states of biologically produced recombinant fluorescent proteins in fully tunable optical microcavities is demonstrated. Natural thickness and concentration gradients in blends of two different proteins allow precise adjustment of the spectral position of polariton states and of the effective coupling strength, thus providing control of the photonic and excitonic components of the system.Publisher PDFPeer reviewe

    Lasing within live cells containing intracellular optical microresonators for barcode-type cell tagging and tracking

    Get PDF
    This work was supported by the European Union Marie Curie Career Integration Grant (PCIG12-GA-2012-334407) and the Scottish Funding Council (SUPA II). M.S. acknowledges funding by the German Science Foundation (DFG) through a Research Fellowship (SCHU 3003/1-1).We report on a laser that is fully embedded into a single live cell. By harnessing natural endocytosis of the cell we introduce a fluorescent whispering gallery mode (WGM) micro-resonator into the cell cytoplasm. On pumping with nanojoule light pulses, green laser emission is generated inside the cells. Our approach can be applied to different cell types and cells with micro-resonators remain viable for weeks under standard conditions. The characteristics of the lasing spectrum provide each cell with a barcode-type label which enables uniquely identifying and tracking of individual migrating cells. Self-sustained lasing from cells paves the way to new forms of cell tracking, intracellular sensing and adaptive imaging.PostprintPeer reviewe

    An exciton-polariton laser based on biologically produced fluorescent protein

    Get PDF
    We thank A. Clemens (TU Dresden, Germany) for technical support with protein preparation and C. Murawski (U St Andrews, UK) for support with TDAF deposition. We acknowledge support from the ERC Starting Grant ABLASE (640012), the Scottish Funding Council (via SUPA), the European Union Marie Curie Career Integration Grant (PCIG12-GA-2012-334407), studentship funding through the EPSRC CM-DTC (EP/L015110/1) and the EPSRC Hybrid Polaritonics program grant (EP/M025330/1). S.H. gratefully acknowledges support by the Royal Society and the Wolfson Foundation and M.S. gratefully acknowledges support from a MSCA IF (659213).Under adequate conditions, cavity-polaritons form a macroscopic coherent quantum state, known as polariton condensate (PC). Compared to Wannier-Mott polaritons in inorganic semiconductors, the localized Frenkel polaritons in organic emitter materials show weaker interaction with each other but stronger coupling to light, which recently enabled the first realization of a PC at room temperature. However, this required ultrafast optical pumping which limits the applications of organic PCs. Here, we demonstrate room-temperature PCs of cavity-polaritons in simple laminated microcavities filled with the biologically produced enhanced green fluorescent protein (eGFP). The unique molecular structure of eGFP prevents exciton annihilation even at high excitation densities, thus facilitating PCs under conventional nanosecond pumping. Condensation is clearly evidenced by a distinct threshold, an interaction-induced blueshift of the condensate, long-range coherence and the presence of a second threshold at higher excitation density which is associated with the onset of photon lasing.Publisher PDFPeer reviewe

    Long-term imaging of cellular forces with high precision by elastic resonator interference stress microscopy

    Get PDF
    This project has received funding from the Human Frontiers Science Program (RGY0074/2013), the Scottish Funding Council (via SUPA), the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement no. 640012), the EPSRC DTP (EP/L505079/1), the RS MacDonald Charitable Trust and the MRC (G1100116 and G110312/1).Cellular forces are crucial for many biological processes but current methods to image them have limitations with respect to data analysis, resolution and throughput. Here, we present a robust approach to measure mechanical cell–substrate interactions in diverse biological systems by interferometrically detecting deformations of an elastic micro-cavity. Elastic resonator interference stress microscopy (ERISM) yields stress maps with exceptional precision and large dynamic range (2 nm displacement resolution over a >1 μm range, translating into 1 pN force sensitivity). This enables investigation of minute vertical stresses (<1 Pa) involved in podosome protrusion, protein-specific cell–substrate interaction and amoeboid migration through spatial confinement in real time. ERISM requires no zero-force reference and avoids phototoxic effects, which facilitates force monitoring over multiple days and at high frame rates and eliminates the need to detach cells after measurements. This allows observation of slow processes such as differentiation and further investigation of cells, for example, by immunostaining.PostprintPeer reviewe

    Entwicklung elektrochemischer Biosensoren fĂĽr die Tumordiagnostik

    Get PDF
    Die vorliegende Arbeit befasst sich mit der Entwicklung und Anwendung elektrochemischer Biosensoren zur Erweiterung oder zum Ersatz herkömmlicher Diagnostikverfahren. Als Basis für die Biosensoren wurden Elektrodenarraychips entworfen und im Reinraum gefertigt. Die als 9WPtE bezeichneten Elektrodenarrays waren aus 3 x 3 Elektrodenpaaren im 96-well-Maßstab (ANSI-Standard) aufgebaut. Jedes Elektrodenpaar bestand aus einer kreisrunden Arbeitselektrode mit einem Durchmesser von 1,9 mm und einer Gegenelektrode als offenem Kreisring um die Arbeitselektrode mit einem Durchmesser von 7 mm. Außerhalb des Reinraums wurden separate Messkammern und Ag/AgCl-Referenzelektroden integriert. Sowohl das Referenzsystem als auch die Signalqualität der 9WPtE-Elektrodenarraychips wurden mittels Zyklovoltammetrie, Impedanzspektroskopie und Rasterkraftmikroskopie analysiert und anhand dieser Untersuchungen optimiert. Das Augenmerk lag hierbei auf den Produktionsprozessen zur Herstellung der Elektrodenarraychips, auf den Elektrolytbedingungen für die elektrochemischen Messungen und auf der Recyclebarkeit der Chips. Die Funktionalisierung der Arbeitselektroden der 9WPtE-Chips erfolgte mit sich selbst-organisierenden Schichten aus Thiolen. An die Thiole wurden mittels Chemoligation die biologischen Erkennungskomponenten kovalent gekoppelt. Mit dem 9WPtE-Elektrodenarray wurde auf diese Weise ein funktionsfähiger kompetitiver Immunosensoren gegen den Tumormarker Tenascin C entwickelt. Außerdem wurden der 9WPtE-Chip und ein zusätzlich entwickelter Durchflusssensor, basierend auf dem Prinzip des 9WPtE, genutzt, um die Möglichkeit der Detektion ganzer eukaryotischer Zellen zu untersuchen

    Entwicklung elektrochemischer Biosensoren fĂĽr die Tumordiagnostik

    No full text
    Die vorliegende Arbeit befasst sich mit der Entwicklung und Anwendung elektrochemischer Biosensoren zur Erweiterung oder zum Ersatz herkömmlicher Diagnostikverfahren. Als Basis für die Biosensoren wurden Elektrodenarraychips entworfen und im Reinraum gefertigt. Die als 9WPtE bezeichneten Elektrodenarrays waren aus 3 x 3 Elektrodenpaaren im 96-well-Maßstab (ANSI-Standard) aufgebaut. Jedes Elektrodenpaar bestand aus einer kreisrunden Arbeitselektrode mit einem Durchmesser von 1,9 mm und einer Gegenelektrode als offenem Kreisring um die Arbeitselektrode mit einem Durchmesser von 7 mm. Außerhalb des Reinraums wurden separate Messkammern und Ag/AgCl-Referenzelektroden integriert. Sowohl das Referenzsystem als auch die Signalqualität der 9WPtE-Elektrodenarraychips wurden mittels Zyklovoltammetrie, Impedanzspektroskopie und Rasterkraftmikroskopie analysiert und anhand dieser Untersuchungen optimiert. Das Augenmerk lag hierbei auf den Produktionsprozessen zur Herstellung der Elektrodenarraychips, auf den Elektrolytbedingungen für die elektrochemischen Messungen und auf der Recyclebarkeit der Chips. Die Funktionalisierung der Arbeitselektroden der 9WPtE-Chips erfolgte mit sich selbst-organisierenden Schichten aus Thiolen. An die Thiole wurden mittels Chemoligation die biologischen Erkennungskomponenten kovalent gekoppelt. Mit dem 9WPtE-Elektrodenarray wurde auf diese Weise ein funktionsfähiger kompetitiver Immunosensoren gegen den Tumormarker Tenascin C entwickelt. Außerdem wurden der 9WPtE-Chip und ein zusätzlich entwickelter Durchflusssensor, basierend auf dem Prinzip des 9WPtE, genutzt, um die Möglichkeit der Detektion ganzer eukaryotischer Zellen zu untersuchen

    Untersuchungen zum Einsatz von Uebergangsstrahlung zur Teilchenidentifikation bei ZEUS

    Get PDF
    SIGLECopy held by FIZ Karlsruhe; available from UB/TIB Hannover / FIZ - Fachinformationszzentrum Karlsruhe / TIB - Technische InformationsbibliothekDEGerman

    Arrays of microscopic organic LEDs for high resolution optogenetics

    No full text
    Optogenetics is a paradigm changing new method to study and manipulate the behavior of cells with light. Following major advances of the used genetic constructs over the last decade, the light sources required for optogenetic control are now receiving increased attention. Here, we report ona novel optogenetic illumination platform based on high density arrays of microscopic organic light emitting diodes (OLEDs). Due to the small dimensions of each array element (6x9 µm²) and the use of ultra-thin device encapsulation, these arrays enable illumination of cells with unprecedented spatiotemporal resolution. We show that adherent eukaryotic cells readily proliferate on these arrays and we demonstrate specific light-induced control of the ionic currentacross the membrane of individual live cells expressing different optogenetic constructs. Our work paves the way for the use of OLEDs for cell-specific optogenetic control in cultured neuronal networks, acute brain slices or as implants in vivo
    corecore