10 research outputs found

    Haptoglobin and serum amyloid A in relation to the somatic cell count in quarter, cow composite and bulk tank milk samples

    Get PDF
    Milk somatic cell count (SCC) is the gold standard in diagnosis of subclinical mastitis, and is also an important parameter in quality programmes of dairy cooperatives. As routine SCC analysis is usually restricted to central laboratories, much effort has been invested in the search for alternative biomarkers of mastitis and milk quality, including the presence in the milk of the acute phase proteins (APP), haptoglobin (Hp) and serum amyloid A (SAA). The aim of this study was to investigate relationships between Hp, SAA and SCC in quarter, cow composite, and bulk tank milk samples. Cows (n=165), without any clinical signs of disease or abnormalities in the milk or udder, from three different dairy farms, were used. Cow composite milk samples from all cows delivering milk at the sampling occasion were taken once in each herd. In one of the farms, representative quarter milk samples (n=103) from 26 cows were also collected. In addition, bulk tank milk samples from 96 dairy farms were included in the study. Samples were analysed for Hp, SAA and SCC, and relationships between the parameters were evaluated at quarter, cow and tank milk levels using Chi-square analysis. Milk samples were categorized according to their SCC, and the presence, or no presence, of SAA and Hp, based on the detection limits of the screening methods (0.3 mg/l and 1.0 mg/l for SAA and Hp, respectively). Hp and SAA were found in milk at quarter, cow composite and bulk tank levels. A large proportion (53%) of the animals had detectable milk concentrations of APP, and SAA was detected more frequently, and at higher concentrations than Hp, regardless of sample type. SAA was detected in as many as 82% of the bulk tank milk samples. Significant relationships were found between Hp, SAA and SCC at quarter and cow composite milk levels, but only between SAA and SCC at bulk tank milk level. Detectable levels of APP were more common at high SCC

    Biosensor assay for determination of haptoglobin in bovine milk

    Get PDF
    Despite more than 30 years of research into mastitis diagnostics, there are few alternatives to the somatic cell count (SCC) in practical use for identification of cows with subclinical mastitis. Mastitis is not only an animal welfare problem, but also affects the yield, composition and technological properties of milk. Hence, dairy cooperatives give farmers a premium quality payment to encourage low SCC although there is no clear scientific data defining the level of SCC in bulk tank milk that is associated with additional benefits in terms of milk quality. Recent research on alternative markers for inflammatory reactions in the lactating cow, e.g. in mastitis, includes investigations of the acute phase protein, haptoglobin (Hp). So far, the content of Hp in milk has mainly been studied in relation to mastitis diagnostics, with little attention given to its importance for milk composition and technological properties. At present, Hp in milk is measured using ELISA, but this technique is not suitable for routine large-scale analysis. In recent years, optical biosensor technology has been used for automated and rapid quantitative analysis of different components in milk, but so far not for analysis of acute phase proteins. The aim of the present study was to develop a rapid and sensitive biosensor method to determine Hp in milk. An affinity sensor assay based on the interaction between Hp and haemoglobin was developed using surface plasmon resonance (SPR) biosensor technology. The assay was used to analyse Hp in composite milk samples from cows without any clinical signs of mastitis and quarter milk samples with a weak to strong reaction in the California Mastitis Test (CMT). A commercial ELISA for determination of Hp in milk was used for comparison. The limit of detection (LOD) of the biosensor assay was determined as 1.1 mg/l. Within-assay and betweenday variations were determined both with bulk tank milk spiked with human Hp and with composite milk samples containing bovine Hp. Coefficients of variation varied between 3.6 and 8.6% at concentrations between 4.0 and 12 mg/l, respectively. Agreement between the results obtained by the biosensor assay and the ELISA was satisfactory ; however, the results obtained by the biosensor were generally lower than the results obtained by the ELISA. Possible explanations for this observation are discussed

    Relationship between haptoglobin and serum amyloid A in milk and milk quality

    Get PDF
    The objective of this study was to evaluate relationships between the presence in milk of the major bovine acute phase proteins, haptoglobin (Hp) and serum amyloid A (SAA), and milk quality parameters. Composite milk samples were collected from 89 clinically healthy dairy cows and analysed for Hp and SAA, total protein, casein, and whey protein levels, casein number, proteolysis, total fat and lactose levels, and somatic cell count (SCC). Milk samples with detectable levels of Hp showed lower total protein and casein levels, whereas milk samples with detectable levels of SAA had lower casein number and lactose level. Samples with detectable levels of acute phase proteins also showed an elevated SCC. The results suggest that the presence of Hp and SAA in milk might indicate unfavourable changes in milk composition, especially in relation to protein quality
    corecore