209 research outputs found

    Bosonization and even Grassmann variables

    Full text link
    A new approach to bosonization in relativistic field theories and many-body systems, based on the use of fermionic composites as integration variables in the Berezin integral defining the partition function of the system, is tested. The method is applied to the study of a simplified version of the BCS model.Comment: 20 pages, LaTe

    Synthesis of gold micro- and nano-wires by infiltration and thermolysis

    Get PDF
    An approach for synthesizing micro- and nano-sized gold wires by infiltration and thermolysis is investigated. A porous ZrO2 ceramic preform with aligned pores obtained by unidirectional freezing and freeze-drying is employed as an infiltration template. The sintered porous ZrO2 preform is then infiltrated by a brushing gold solution. The thermolysis is conducted at 600 °C in air. Micro- and nano-sized gold wires are developed within the walls of the pores after thermolysis. The diameter of the gold wires ranges from several hundred nanometers to several microns

    Sequential deposition of copper/alumina composites

    Get PDF

    Robust Neutrino Constraints by Combining Low Redshift Observations with the CMB

    Get PDF
    We illustrate how recently improved low-redshift cosmological measurements can tighten constraints on neutrino properties. In particular we examine the impact of the assumed cosmological model on the constraints. We first consider the new HST H0 = 74.2 +/- 3.6 measurement by Riess et al. (2009) and the sigma8*(Omegam/0.25)^0.41 = 0.832 +/- 0.033 constraint from Rozo et al. (2009) derived from the SDSS maxBCG Cluster Catalog. In a Lambda CDM model and when combined with WMAP5 constraints, these low-redshift measurements constrain sum mnu<0.4 eV at the 95% confidence level. This bound does not relax when allowing for the running of the spectral index or for primordial tensor perturbations. When adding also Supernovae and BAO constraints, we obtain a 95% upper limit of sum mnu<0.3 eV. We test the sensitivity of the neutrino mass constraint to the assumed expansion history by both allowing a dark energy equation of state parameter w to vary, and by studying a model with coupling between dark energy and dark matter, which allows for variation in w, Omegak, and dark coupling strength xi. When combining CMB, H0, and the SDSS LRG halo power spectrum from Reid et al. 2009, we find that in this very general model, sum mnu < 0.51 eV with 95% confidence. If we allow the number of relativistic species Nrel to vary in a Lambda CDM model with sum mnu = 0, we find Nrel = 3.76^{+0.63}_{-0.68} (^{+1.38}_{-1.21}) for the 68% and 95% confidence intervals. We also report prior-independent constraints, which are in excellent agreement with the Bayesian constraints.Comment: 19 pages, 6 figures, submitted to JCAP; v2: accepted version. Added section on profile likelihood for Nrel, improved plot

    Double-Layer Systems at Zero Magnetic Field

    Full text link
    We investigate theoretically the effects of intralayer and interlayer exchange in biased double-layer electron and hole systems, in the absence of a magnetic field. We use a variational Hartree-Fock-like approximation to analyze the effects of layer separation, layer density, tunneling, and applied gate voltages on the layer densities and on interlayer phase coherence. In agreement with earlier work, we find that for very small layer separations and low layer densities, an interlayer-correlated ground state possessing spontaneous interlayer coherence (SILC) is obtained, even in the absence of interlayer tunneling. In contrast to earlier work, we find that as a function of total density, there exist four, rather than three, distinct noncrystalline phases for balanced double-layer systems without interlayer tunneling. The newly identified phase exists for a narrow range of densities and has three components and slightly unequal layer densities, with one layer being spin polarized, and the other unpolarized. An additional two-component phase is also possible in the presence of sufficiently strong bias or tunneling. The lowest-density SILC phase is the fully spin- and pseudospin-polarized ``one-component'' phase discussed by Zheng {\it et al.} [Phys. Rev. B {\bf 55}, 4506 (1997)]. We argue that this phase will produce a finite interlayer Coulomb drag at zero temperature due to the SILC. We calculate the particle densities in each layer as a function of the gate voltage and total particle density, and find that interlayer exchange can reduce or prevent abrupt transfers of charge between the two layers. We also calculate the effect of interlayer exchange on the interlayer capacitance.Comment: 35 pages, 19 figures included. To appear in PR

    Semiclassical theory of transport in a random magnetic field

    Get PDF
    We study the semiclassical kinetics of 2D fermions in a smoothly varying magnetic field B(r)B({\bf r}). The nature of the transport depends crucially on both the strength B0B_0 of the random component of B(r)B({\bf r}) and its mean value Bˉ\bar{B}. For Bˉ=0\bar{B}=0, the governing parameter is α=d/R0\alpha=d/R_0, where dd is the correlation length of disorder and R0R_0 is the Larmor radius in the field B0B_0. While for αâ‰Ș1\alpha\ll 1 the Drude theory applies, at α≫1\alpha\gg 1 most particles drift adiabatically along closed contours and are localized in the adiabatic approximation. The conductivity is then determined by a special class of trajectories, the "snake states", which percolate by scattering at the saddle points of B(r)B({\bf r}) where the adiabaticity of their motion breaks down. The external field also suppresses the diffusion by creating a percolation network of drifting cyclotron orbits. This kind of percolation is due only to a weak violation of the adiabaticity of the cyclotron rotation, yielding an exponential drop of the conductivity at large Bˉ\bar{B}. In the regime α≫1\alpha\gg 1 the crossover between the snake-state percolation and the percolation of the drift orbits with increasing Bˉ\bar{B} has the character of a phase transition (localization of snake states) smeared exponentially weakly by non-adiabatic effects. The ac conductivity also reflects the dynamical properties of particles moving on the fractal percolation network. In particular, it has a sharp kink at zero frequency and falls off exponentially at higher frequencies. We also discuss the nature of the quantum magnetooscillations. Detailed numerical studies confirm the analytical findings. The shape of the magnetoresistivity at α∌1\alpha\sim 1 is in good agreement with experimental data in the FQHE regime near Îœ=1/2\nu=1/2.Comment: 22 pages REVTEX, 14 figure

    Microphysics of SO(10) Cosmic Strings

    Full text link
    We uncover a rich microphysical structure for SO(10) cosmic strings. For the abelian string the electroweak symmetry is restored around it in a region depending on the electroweak scale. A rich structure of nonabelian strings is found. Some of these also restore the electroweak symmetry. We investigate the zero mode structure of our strings. Whilst there are right handed neutrino zero modes for the abelian string, they do not survive the electroweak phase transition. In general the nonabelian strings do not have fermion zero modes. We consider the generalisation of our results to other theories and consider cosmological consequences of them.Comment: 34 pages, LATEX. Replaced version is restructured, and has small correction to fermion zero mode analysis. To be published in Physical Review

    Deriving Non-decoupling Effects of Heavy Fields from the Path Integral: a Heavy Higgs Field in an SU(2) Gauge Theory

    Get PDF
    We describe a method to remove non-decoupling heavy fields from a quantized field theory and to construct a low-energy one-loop effective Lagrangian by integrating out the heavy degrees of freedom in the path integral. We apply this method to the Higgs boson in a spontaneously broken SU(2) gauge theory (gauged linear sigma-model). In this context, the background-field method is generalized to the non-linear representation of the Higgs sector by applying (a generalization of) the Stueckelberg formalism. The (background) gauge-invariant renormalization is discussed. At one loop the log M_H-terms of the heavy-Higgs limit of this model coincide with the UV-divergent terms of the corresponding gauged non-linear sigma-model, but vertex functions differ in addition by finite (constant) terms in both models. These terms are also derived by our method. Diagrammatic calculations of some vertex functions are presented as consistency check.Comment: 33 Pages LaTeX, 6 figures uuencoded postscrip

    Integration of fluorescence collection optics with a microfabricated surface electrode ion trap

    Full text link
    We have successfully demonstrated an integrated optical system for collecting the fluorescence from a trapped ion. The system, consisting of an array of transmissive, dielectric micro-optics and an optical fiber array, has been intimately incorporated into the ion-trapping chip without negatively impacting trapping performance. Epoxies, vacuum feedthrough, and optical component materials were carefully chosen so that they did not degrade the vacuum environment, and we have demonstrated light detection as well as ion trapping and shuttling behavior comparable to trapping chips without integrated optics, with no modification to the control voltages of the trapping chip.Comment: 14 pages, 12 figure

    The Metric of the Cosmos from Luminosity and Age Data

    Full text link
    This paper presents the algorithm for determining the Lemaitre-Tolman (LT) model that best fits given datasets for maximum stellar ages, and SNIa luminosities, both as functions of redshift. It then applies it to current cosmological data. Special attention must be given to the handling of the origin, and the region of the maximum diameter distances. As with a previous combination of datasets (galaxy number counts and luminosity distances versus redshift), there are relationships that must hold at the region of the maximum diameter distance, which are unlikely to be obeyed exactly by real data. We show how to make corrections that enable a self-consistent solution to be found. We address the questions of the best way to approximate discrete data with smooth functions, and how to estimate the uncertainties of the output - the 3 free functions that determine a specific LT metric. While current data does not permit any confidence in our results, we show that the method works well, and reasonable LT models do fit with or without a cosmological constant.Comment: 25 pages, 8 figures; matches published versio
    • 

    corecore