3 research outputs found

    Stride-to-stride fluctuations in transtibial amputees are not affected by changes in push-off mechanics from using different prostheses

    Get PDF
    Stride-to-stride fluctuations of joint kinematics during walking reflect a highly structured organization that is characteristic of healthy gait. The organization of stride-to-stride fluctuations is disturbed in lower-limb prosthesis users, yet the factors contributing to this difference are unclear. One potential contributor to the changes in stride-to-stride fluctuations is the altered push-off mechanics experienced by passive prosthesis users. The purpose of our study was to determine if changes in push-off mechanics affect stride-to-stride fluctuations in transtibial amputees. Twenty-two unilateral transtibial amputees were enrolled in the 6- week cross-over study, where High and Low Activity (based on the Medicare Functional Classification System) prostheses were worn for three weeks each. Data collection took place at the end of the third week. Participants walked on a treadmill in a motion capture laboratory to quantify stride-to-stride fluctuations of the lower extremity joint angle trajectories using the largest Lyapunov Exponent, and over floor-embedded force platforms to enable calculating push-off work from the prosthesis and the sound limb. Push-off work was 140% greater in the High Activity prosthesis compared to the Low Activity prosthesis (p \u3c 0.001), however no significant change was observed in stride-to-stride fluctuations of the ankle between the two prosthesis types (p = 0.576). There was no significant correlation between changes in prosthesis push-off work and the largest Lyapunov exponent. Though differences in push-off work were observed between the two prosthesis types, stride-to-stride fluctuations remained similar, indicating that prosthesis propulsion mechanics may not be a strong determinant of stride-to-stride fluctuations in unpowered transtibial prosthesis users

    Ultrasound-assisted dilute acid hydrolysis for production of essential oils, pectin and bacterial cellulose via a citrus processing waste biorefinery

    No full text
    An orange peel waste biorefinery was developed employing a design of experiments approach to optimize the ultrasound-assisted dilute acid hydrolysis process applied for production of useful commodities. Central composite design-based response surface methodology was used to approximate the combined effects of process parameters in simultaneous production of essential oils, pectin and a sugar-rich hydrolyzate. Application of a desirability function determined the optimal conditions required for maximal production efficiency of essential oils, pectin and sugars as 5.75% solid loading, 1.21% acid concentration and 34.2 min duration. Maximum production yields of 0.12% w/w essential oils, 45% w/w pectin and 40% w/w sugars were achieved under optimized conditions in lab- and pilot-scale facilities. The hydrolyzate formed was applied in bacterial cellulose fermentations producing 5.82 g biopolymer per 100 g waste. Design of experiments was efficient for process analysis and optimization providing a systems platform for the study of biomass-based biorefineries

    Appendix

    No full text
    corecore