18 research outputs found

    Introduction

    Get PDF
    The large number of submissions to and excellent attendance at the Ground-based and Airborne Telescopes IV conference reflects the strong and growing interest in the astronomical and engineering communities. More than 250 papers were submitted to this year's conference, the largest number in the series' history. This year's conference included 28 oral sessions and two poster sessions

    Introduction

    Get PDF
    The large number of submissions to and excellent attendance at the Ground-based and Airborne Telescopes IV conference reflects the strong and growing interest in the astronomical and engineering communities. More than 250 papers were submitted to this year's conference, the largest number in the series' history. This year's conference included 28 oral sessions and two poster sessions

    TMT telescope structure system: design and development progress report

    Get PDF
    The Thirty Meter Telescope (TMT) project has revised the reference optical configuration from an Aplanatic Gregorian to a Ritchey-Chrétien design. This paper describes the revised telescope structural design and outlines the design methodology for achieving the dynamic performance requirements derived from the image jitter error budget. The usage of transfer function tools which incorporate the telescope structure system dynamic characteristics and the control system properties is described along with the optimization process for the integrated system. Progress on the structural design for seismic considerations is presented. Moreover, mechanical design progress on the mount control system hardware such as the hydrostatic bearings and drive motors, cable wraps and safety system hardware such as brakes and absorbers are also presented

    TMT telescope structure system: design and development progress report

    Get PDF
    The Thirty Meter Telescope (TMT) project has revised the reference optical configuration from an Aplanatic Gregorian to a Ritchey-Chrétien design. This paper describes the revised telescope structural design and outlines the design methodology for achieving the dynamic performance requirements derived from the image jitter error budget. The usage of transfer function tools which incorporate the telescope structure system dynamic characteristics and the control system properties is described along with the optimization process for the integrated system. Progress on the structural design for seismic considerations is presented. Moreover, mechanical design progress on the mount control system hardware such as the hydrostatic bearings and drive motors, cable wraps and safety system hardware such as brakes and absorbers are also presented

    The QUIJOTE-CMB experiment: studying the polarisation of the galactic and cosmological microwave emissions

    Get PDF
    The QUIJOTE (Q-U-I JOint Tenerife) CMB Experiment will operate at the Teide Observatory with the aim of characterizing the polarisation of the CMB and other processes of Galactic and extragalactic emission in the frequency range of 10-40GHz and at large and medium angular scales. The first of the two QUIJOTE telescopes and the first multi-frequency (10-30GHz) instrument are already built and have been tested in the laboratory. QUIJOTE-CMB will be a valuable complement at low frequencies for the Planck mission, and will have the required sensitivity to detect a primordial gravitational-wave component if the tensor-to-scalar ratio is larger than r = 0.05.The QUIJOTE-CMB experiment is being developed by the Instituto de Astrofisica de Canarias (IAC), the Instituto de Fisica de Cantabria (IFCA), and the Universities of Cantabria, Manchester and Cambridge. Partial financial support is provided by the Spanish Ministry of Economy and Competitiveness (MINECO) under the projects AYA2010-21766-C03 (01, 02 and 03), and also by the Consolider-Ingenio project CSD2010-00064 (EPI: Exploring the Physics of Inflation49)

    New optical telescope projects at Devasthal Observatory

    No full text
    Devasthal, located in the Kumaun region of Himalayas is emerging as one of the best optical astronomy site in the continent. The minimum recorded ground level atmospheric seeing at the site is 0.006 with median value at 1.001. Currently, a 1.3-m fast (f/4) wide field-of-view (660) optical telescope is operating at the site. In near future, a 4-m liquid mirror telescope in collaboration with Belgium and Canada, and a 3.6-m optical telescope in collaboration with Belgium are expected to be installed in 2013. The telescopes will be operated by Aryabhatta Research Institute of Observational Sciences. The first instruments on the 3.6-m telescope will be in-house designed and assembled faint object spectrograph and camera. The second generation instruments will be including a large field-of-view optical imager, high resolution optical spectrograph, integral field unit and an optical near-infrared spectrograph. The 1.3-m telescope is primarily used for wide field photometry imaging while the liquid mirror telescope will see a time bound operation to image half a degree wide strip in the galactic plane. There will be an aluminizing plant at the site to coat mirrors of sizes up to 3.7 m. The Devasthal Observatory and its geographical importance in between major astronomical observatories makes it important for time critical observations requiring continuous monitoring of variable and transient objects from ground based observatories. The site characteristics, its expansions plans and first results from the existing telescope are presented

    The ASTRI SST-2M prototype for the Cherenkov Telescope Array: manufacturing of the structure and the mirrorsGround-based and Airborne Telescopes V

    No full text
    The Cherenkov Telescope Array (CTA) observatory will represent the next generation of Imaging Atmospheric Cherenkov Telescopes. Using a combination of large-, medium-, and small-scale telescopes (LST, MST, SST, respectively), it will explore the Very High Energy domain from a few tens of GeV up to few hundreds of TeV with unprecedented sensitivity, angular resolution and imaging quality. In this framework, the Italian ASTRI program, led by the Italian National Institute of Astrophysics (INAF), is currently developing a scientific and technological SST prototype named ASTRI SST-2M; a 4-meter class telescope, it will adopt an aplanatic, wide-field, double-reflection optical layout in a Schwarzschild-Couder configuration. In this contribution we give an overview of the technological solutions adopted for the ASTRI SST-2M prototype. In particular we focus on the manufacturing of the telescope structure and mirrors. We will also describe early results from tests

    SST-GATE: an innovative telescope for very high energy astronomy

    No full text
    The Cherenkov Telescope Array (CTA) is an international collaboration that aims to create the world's largest (ever) Very High Energy gamma-ray telescope array, consisting of more than 100 telescopes covering an area of several square kilometers to observe the electromagnetic showers generated by incoming cosmic gamma-rays with very high energies (from a few tens of GeV up to over 100 TeV). Observing such sources requires - amongst many other things - a large FoV (Field of View). In the framework of CTA, SST-GATE (Small Size Telescope - GAmma-ray Telescope Elements) aims to investigate and to build one of the two first CTA prototypes based on the Schwarzschild-Couder (SC) optical design that delivers a FoV close to 10 degrees in diameter. To achieve the required performance per unit cost, many improvements in mirror manufacturing and in other technologies are required. We present in this paper the current status of our project. After a brief introduction of the very high energy context, we present the opto-mechanical design, discuss the technological tradeoffs and explain the electronics philosophy that will ensure the telescopes cost is minimised without limiting its capabilities. We then describe the software nedeed to operate the telescope and conclude by presenting the expected telescope performance and some management considerations

    The ASTRI SST-2M prototype for the Cherenkov Telescope Array: prototype technologies goals and strategies for the future SSTGround-based and Airborne Telescopes V

    No full text
    The Cherenkov Telescope Array (CTA) observatory will represent the next generation of Imaging Atmospheric Cherenkov Telescope. Using a combination of large-, medium-, and small-scale telescopes (LST, MST, SST, respectively), it will explore the Very High Energy domain from a few tens of GeVup to about few hundreds of TeV with unprecedented sensitivity, angular resolution and imaging quality. In this framework, the Italian ASTRI program, led by the Italian National Institute of Astrophysics (INAF) developed a 4-meter class telescope, which will adopt an aplanatic, wide-field, double-reflection optical layout in a Schwarzschild- Couder configuration. Within this program INAF assigned to the consortium between Galbiati Group and EIE Group the construction, assembly and tests activities of the prototype named ASTRI SST-2M. On the basis of the lesson learnt from the prototype, other telescopes will be produced, starting from a re-design phase, in order to optimize performances and the overall costs and production schedule for the CTA-SST telescope. This paper will firstly give an overview of the concept for the SST prototype mount structure. In this contest, the technologies adopted for the design, manufacturing and tests of the entire system will be presented. Moreover, a specific focus on the challenges of the prototype and the strategies associated with it will be provided, in order to outline the near future performance goals for this type of Cherenkov telescopes employed for Gamma ray science

    The Balloon-borne Large Aperture Submillimeter Telescope for Polarimetry-BLASTPol: performance and results from the 2012 Antarctic flight

    Get PDF
    The Balloon-borne Large Aperture Submillimeter Telescope for Polarimetry (BLASTPol) is a suborbital mapping experiment, designed to study the role played by magnetic fields in the star formation process. BLASTPol observes polarized light using a total power instrument, photolithographic polarizing grids, and an achromatic half-wave plate to modulate the polarization signal. During its second flight from Antarctica in December 2012, BLASTPol made degree scale maps of linearly polarized dust emission from molecular clouds in three wavebands, centered at 250, 350, and 500 mum. The instrumental performance was an improvement over the 2010 BLASTPol ight, with decreased systematics resulting in a higher number of confirmed polarization vectors. The resultant dataset allows BLASTPol to trace magnetic fields in star-forming regions at scales ranging from cores to entire molecular cloud complexes
    corecore