736 research outputs found
Bioelectrical phase angle values in a clinical sample of ambulatory rehabilitation patients
Background: Phase angle (PhA) is derived from the resistance and reactance measurements obtained from bioelectric impedance analysis (BIA) and is considered indicative of cellular health and membrane integrity. This study measured PhA values of rehabilitation patients and compared them to reference values, measures of functional ability and serum C-reactive protein (CRP) levels to explore their utility as a clinical tool to monitor disease progression and treatment efficacy. Methods: This cross-sectional observational study was conducted on 215 ambulatory rehabilitation patients aged 20 – 94 years. All participants had been hospitalised for a stroke, orthopaedic or other condition resulting in a functional limitation. PhA was derived from BIA analysis and functional ability characterised using the Functional Independence Measure (FIM), timed up and go (TUG) and maximal quadriceps strength (MQS). Serum levels of CRP were also collected. Results: Stroke patients had the highest PhA (5.3°) followed by elective orthopaedic surgery (5.0°) with the other group (4.3°) significantly lower than both previous categories (p < 0.001). Ambulatory rehabilitation patients' PhA values were dependent on age and sex (p < 0.001), lower than published age matched healthy reference values (p ≤ 0.05) and similar to other hospitalised or sick groups, but also higher than values reported in critically ill patients. Patients with CRP values less than 10 mg.L-1 had significantly (p = 0.005) higher mean PhA values. Furthermore, the highest functional status quartiles had significantly higher PhAs (p ≤ 0.04) for the FIM, MQS and TUG measures. Conclusion: The results suggest that the phase angles of rehabilitation patients are between those of healthy individuals and seriously ill patients, thereby supporting claims that PhA is indicative of general health status. Phase angles are a potentially useful indicator of functional status in patients commencing an ambulatory rehabilitation program with a normal hydration status.Simon M. Gunn, Julie A. Halbert, Lynne C. Giles, Jacqueline M. Stepien, Michelle D. Miller and Maria Crott
The Very Short Period M Dwarf Binary SDSS J001641-000925
We present follow-up observations and analysis of the recently discovered
short period low-mass eclipsing binary, SDSS J001641-000925. With an orbital
period of 0.19856 days, this system has one of the shortest known periods for
an M dwarf binary system. Medium-resolution spectroscopy and multi-band
photometry for the system are presented. Markov chain Monte Carlo modeling of
the light curves and radial velocities yields estimated masses for the stars of
M1 = 0.54 +/- 0.07 Msun and M2 = 0.34 +/- 0.04 Msun, and radii of R1 = 0.68 +/-
0.03 Rsun and R2 = 0.58 +/- 0.03 Rsun respectively. This solution places both
components above the critical Roche overfill limit, providing strong evidence
that SDSS J001641-000925 is the first verified M-dwarf contact binary system.
Within the follow-up spectroscopy we find signatures of non-solid body rotation
velocities, which we interpret as evidence for mass transfer or loss within the
system. In addition, our photometry samples the system over 9 years, and we
find strong evidence for period decay at the rate of dP/dt ~8 s/yr. Both of
these signatures raise the intriguing possibility that the system is in
over-contact, and actively losing angular momentum, likely through mass loss.
This places SDSS J001641-000925 as not just the first M-dwarf over-contact
binary, but one of the few systems of any spectral type known to be actively
undergoing coalescence. Further study SDSS J001641-000925 is on-going to verify
the nature of the system, which may prove to be a unique astrophysical
laboratory.Comment: 11 figures, ApJ Accepte
EVALUATION OF GREEN LASER SOURCE ADDITIVE MANUFACTURING TECHNOLOGY FOR ACCELERATOR APPLICATIONS WITH ULTRA-HIGH VACUUM REQUIREMENTS
Additive Manufacturing (AM) offers different benefits such as efficient material usage, reduced production time and design freedom. Moreover, with continuous technological developments, AM expands in versatility and different material usage capabilities. Recently new energy sources have been developed for AM – green wavelength lasers, which provide better energy absorption for pure copper. Due to high thermal and electrical conductivity of copper, this novel AM technology is highly promising for various industries, particularly, there is a huge interest to use it for accelerator applications. In particular, these AM produced accelerator components should reach the associated Ultra High Vacuum (UHV)
requirements. In this study, vacuum membranes of pure copper were produced by AM using a green laser source, in different thicknesses and built angles. Furthermore, a vacuum membrane helium leak tightness test was performed at room temperature by using a high-sensitivity mass spectrometer. Comparison of these test results was performed with previously established results. Through this study, novel knowledge and initial results are provided
for green laser source AM technology usage for applications for UHV accelerator components
Pion-Lambda-Sigma Coupling Extracted from Hyperonic Atoms
The latest measurements of the atomic level width in Sigma-hyperonic Pb atom
offer the most accurate datum in the region of low-energy Sigma-hyperon
physics. Atomic widths are due to the conversion of Sigma-nucleon into
Lambda-nucleon. In high angular momentum states this conversion is dominated by
the one-pion exchange. A joint analysis of the data of the scattering of
negative-Sigma on proton converting into a Lambda and a neutron and of the
atomic widths allows to extract a pseudovector pion-hyperon-Sigma coupling
constant of 0.048 with a statistical error of +-0.005 and a systematic one of
+-0.004. This corresponds to a pseudoscalar coupling constant of 13.3 with a
statistical uncertainty of 1.4 and a systematic one of 1.1.Comment: 12 pages, 1 figure, Use of Revtex.st
Mergers of close primordial binaries
We study the production of main sequence mergers of tidally-synchronized
primordial short-period binaries. The principal ingredients of our calculation
are the angular momentum loss rates inferred from the spindown of open cluster
stars and the distribution of binary properties in young open clusters. We
compare our results with the expected number of systems that experience mass
transfer in post-main sequence phases of evolution and compute the
uncertainties in the theoretical predictions. We estimate that main-sequence
mergers can account for the observed number of single blue stragglers in M67.
Applied to the blue straggler population, this implies that such mergers are
responsible for about one quarter of the population of halo blue metal poor
stars, and at least one third of the blue stragglers in open clusters for
systems older than 1 Gyr. The observed trends as a function of age are
consistent with a saturated angular momentum loss rate for rapidly rotating
tidally synchronized systems. The predicted number of blue stragglers from main
sequence mergers alone is comparable to the number observed in globular
clusters, indicating that the net effect of dynamical interactions in dense
stellar environments is to reduce rather than increase the blue straggler
population. A population of subturnoff mergers of order 3-4% of the upper main
sequence population is also predicted for stars older than 4 Gyr, which is
roughly comparable to the small population of highly Li-depleted halo dwarfs.
Other observational tests are discussed.Comment: number of pages depends on font, margins, columns etc (58 with given
format), 14 figures, submitted to the Astrophysical Journa
Four ultra-short period eclipsing M-dwarf binaries in the WFCAM Transit Survey
We report on the discovery of four ultra-short period (P<0.18 days) eclipsing
M-dwarf binaries in the WFCAM Transit Survey. Their orbital periods are
significantly shorter than of any other known main-sequence binary system, and
are all significantly below the sharp period cut-off at P~0.22 days as seen in
binaries of earlier type stars. The shortest-period binary consists of two M4
type stars in a P=0.112 day orbit. The binaries are discovered as part of an
extensive search for short-period eclipsing systems in over 260,000 stellar
lightcurves, including over 10,000 M-dwarfs down to J=18 mag, yielding 25
binaries with P<0.23 days. In a popular paradigm, the evolution of short period
binaries of cool main-sequence stars is driven by loss of angular momentum
through magnetised winds. In this scheme, the observed P~0.22 day period
cut-off is explained as being due to timescales that are too long for
lower-mass binaries to decay into tighter orbits. Our discovery of low-mass
binaries with significantly shorter orbits implies that either these timescales
have been overestimated for M-dwarfs, e.g. due to a higher effective magnetic
activity, or that the mechanism for forming these tight M-dwarf binaries is
different from that of earlier type main-sequence stars.Comment: 22 pages, 17 figures, 3 tables Accepted for publication in MNRA
ACVIM consensus guidelines for the diagnosis and treatment of myxomatous mitral valve disease in dogs
This report, issued by the ACVIM Specialty of Cardiology consensus panel, revises guidelines for the diagnosis and treatment of myxomatous mitral valve disease (MMVD, also known as endocardiosis and degenerative or chronic valvular heart disease) in dogs, originally published in 2009. Updates were made to diagnostic, as well as medical, surgical, and dietary treatment recommendations. The strength of these recommendations was based on both the quantity and quality of available evidence supporting diagnostic and therapeutic decisions. Management of MMVD before the onset of clinical signs of heart failure has changed substantially compared with the 2009 guidelines, and new strategies to diagnose and treat advanced heart failure and pulmonary hypertension are reviewed
Longitudinal Analysis of Quality of Life, Clinical, Radiographic, Echocardiographic, and Laboratory Variables in Dogs with Preclinical Myxomatous Mitral Valve Disease Receiving Pimobendan or Placebo: The EPIC Study
Background: Changes in clinical variables associated with the administration of pimobendan to dogs with preclinical myxomatous mitral valve disease (MMVD) and cardiomegaly have not been described.
Objectives: To investigate the effect of pimobendan on clinical variables and the relationship between a change in heart size and the time to congestive heart failure (CHF) or cardiac-related death (CRD) in dogs with MMVD and cardiomegaly. To determine whether pimobendan-treated dogs differ from dogs receiving placebo at onset of CHF.
Animals: Three hundred and fifty-four dogs with MMVD and cardiomegaly.
Materials and Methods: Prospective, blinded study with dogs randomized (ratio 1:1) to pimobendan (0.4-0.6 mg/kg/d) or placebo. Clinical, laboratory, and heart-size variables in both groups were measured and compared at different time points (day 35 and onset of CHF) and over the study duration. Relationships between short-term changes in echocardiographic variables and time to CHF or CRD were explored.
Results: At day 35, heart size had reduced in the pimobendan group:median change in (Delta) LVIDDN -0.06 (IQR:-0.15 to + 0.02), P < 0.0001, and LA:Ao -0.08 (IQR:-0.23 to + 0.03), P < 0.0001. Reduction in heart size was associated with increased time to CHF or CRD. Hazard ratio for a 0.1 increase in Delta LVIDDN was 1.26, P = 0.0003. Hazard ratio for a 0.1 increase in Delta LA:Ao was 1.14, P = 0.0002. At onset of CHF, groups were similar.
Conclusions and Clinical Importance: Pimobendan treatment reduces heart size. Reduced heart size is associated with improved outcome. At the onset of CHF, dogs treated with pimobendan were indistinguishable from those receiving placebo
Evolution of Stellar Collision Products in Globular Clusters - II. Off-axis Collision
We continue our exploration of collisionally merged stars in the blue
straggler region of the color-magnitude diagram. We report the results of new
SPH calculations of parabolic collisions between two main-sequence stars, with
the initial structure and composition profiles of the parent stars having been
determined from stellar evolution calculations. Parallelization of the SPH code
has permitted much higher numerical resolution of the hydrodynamics. We also
present evolutionary tracks for the resulting collision products, which emerge
as rapidly rotating blue stragglers. The rotating collision products are
brighter, bluer and remain on the main sequence longer than their non-rotating
counterparts. In addition, they retain their rapid rotation rates throughout
their main sequence lifetime. Rotationally-induced mixing strongly affects the
evolution of the collision products, although it is not sufficient to mix the
entire star. We discuss the implications of these results for studies of blue
straggler populations in clusters. This work shows that off-axis collision
products cannot become blue stragglers unless they lose a large fraction of
their initial angular momentum. The mechanism for this loss is not apparent,
although some possibilities are discussed.Comment: 25 pages incl. 9 figures (one in colour). Submitted to Ap
- …