33 research outputs found

    Intricate macrophage-colorectal cancer cell communication in response to radiation

    Get PDF
    Both cancer and tumour-associated host cells are exposed to ionizing radiation when a tumour is subjected to radiotherapy. Macrophages frequently constitute the most abundant tumour-associated immune population, playing a role in tumour progression and response to therapy. The present work aimed to evaluate the importance of macrophage-cancer cell communication in the cellular response to radiation. To address this question, we established monocultures and indirect co-cultures of human monocyte-derived macrophages with RKO or SW1463 colorectal cancer cells, which exhibit higher and lower radiation sensitivity, respectively. Mono- and co-cultures were then irradiated with 5 cumulative doses, in a similar fractionated scheme to that used during cancer patients' treatment (2 Gy/fraction/day). Our results demonstrated that macrophages sensitize RKO to radiation-induced apoptosis, while protecting SW1463 cells. Additionally, the co-culture with macrophages increased the mRNA expression of metabolism- and survival-related genes more in SW1463 than in RKO. The presence of macrophages also upregulated glucose transporter 1 expression in irradiated SW1463, but not in RKO cells. In addition, the influence of cancer cells on the expression of pro- and anti-inflammatory macrophage markers, upon radiation exposure, was also evaluated. In the presence of RKO or SW1463, irradiated macrophages exhibit higher levels of pro-inflammatory TNF, IL6, CCL2 and CCR7, and of anti-inflammatory CCL18. However, RKO cells induce an increase of macrophage pro-inflammatory IL1B, while SW1463 cells promote higher pro-inflammatory CXCL8 and CD80, and also anti-inflammatory VCAN and IL10 levels. Thus, our data demonstrated that macrophages and cancer cells mutually influence their response to radiation. Notably, conditioned medium from irradiated co-cultures increased non-irradiated RKO cell migration and invasion and did not impact on angiogenesis in a chicken embryo chorioallantoic membrane assay. Overall, the establishment of primary human macrophage-cancer cell co-cultures revealed an intricate cell communication in response to ionizing radiation, which should be considered when developing therapies adjuvant to radiotherapy

    Bring Back the Interview for Exiting Medical Students in the United Kingdom

    No full text

    Will Behavioral-Based Interviewing Improve Resident Selection and Decrease Attrition?

    No full text

    Expression of suppressors of cytokine signaling during liver regeneration

    No full text
    The cytokines TNF and IL-6 play a critical role early in liver regeneration following partial hepatectomy (PH). Since IL-6 activates signal transducers and activators of transcription (STATs), we examined whether the suppressors of cytokine signaling (SOCS) may be involved in terminating IL-6 signaling. We show here that SOCS-3 mRNA is induced 40-fold 2 hours after surgery. SOCS-2 and CIS mRNA are only weakly induced, and SOCS-1 is not detectable. SOCS-3 induction after PH is transient and correlates with a decrease in STAT-3 DNA binding and a loss of tyrosine 705 phosphorylation. This response is markedly reduced in IL-6 knockout (KO) mice. TNF injection induces SOCS-3 mRNA in wild-type mice (albeit weakly compared with the increase observed after PH) but not in TNF receptor 1 or IL-6 KO mice. In contrast, IL-6 injection induces SOCS-3 in these animals, demonstrating a requirement for IL-6 in SOCS-3 induction. IL-6 injection into wild-type mice also induces SOCS-1, -2, and CIS mRNA, in addition to SOCS-3. Together, these results suggest that SOCS-3 may be a key component in downregulating STAT-3 signaling after PH and that SOCS-3 mRNA levels in the regenerating liver are regulated by IL-6
    corecore