369 research outputs found

    Lateral-directional stability and control characteristics of the Quiet Short-Haul Research Aircraft (QSRA)

    Get PDF
    The results are presented of flight experiments to determine the lateral-directional stability and control characteristics of the Quiet Short-Haul Research Aircraft (QSRA), an experimental aircraft designed to furnish information on various aerodynamic characteristics of a transport type of airplane that makes use of the upper-surface blown (USB) flap technology to achieve short takeoff and landing (STOL) performance. The flight program designed to acquire the data consisted of maneuvers produced by rudder and control-wheel inputs with the airplane in several configurations that had been proposed for landing approach and takeoff operation. The normal stability augmentation system was not engaged during these maneuvers. Time-history records from the maneuvers were analyzed with a parameter estimation procedure to extract lateral-directional stability and control derivatives. For one aircraft configuration in which the USB flaps were deflected 50 deg, several maneuvers were performed to determine the effects of varying the average angle of attack, varying the thrust coefficient, and setting the airplane's upper surface spoilers at a 13 deg symmetrical bias angle . The effects on the lateral characteristics of deflecting the spoilers were rather small and generally favorable. The data indicate that for one test, conducted at low thrust (a thrust coefficient of 0.38), compared with results from tests at thrust coefficients of 0.77 and larger, there was a significant decrease in the lateral control effectiveness, in the yaw damping and in the directional derivative. The directional derivative was also decreased (by about 30 percent) when the average angle of attack of the test was increased from 3 to 16 deg

    The Radial Velocity Precision of Fiber-fed Spectrographs

    Get PDF
    We have measured the radial velocities of five 51 Peg-type stars and one star with constant velocity. Our measurements, on 20 \AA centered at 3947 \AA, were conventional using Th/Ar comparison spectra taken every 20 or 40 minutes between the stellar exposures. Existing IRAF routines were used for the reduction. We find σRV\sigma_{RV} \leq 20 m s1^{-1}, provided 4 measurements (out of 72) with residuals >5σRV>5\sigma_{RV} are neglected. The observations were made with the CFHT Gecko spectrograph, fiber-fed with the CAFE system (R\sim110,000). σRV\sigma_{RV} \leq10 m s1^{-1} seems possible with additional care. This study was incidental to the main program and so not exhaustive but the small value of σRV\sigma_{RV} implies that the fiber feed/image slicer system on Gecko + CAFE, essentially eliminates the long standing problem of guiding errors in radial velocity measurements. We are not suggesting this conventional approach for serious Doppler planet searches (especially with Gecko which has such a small multiplex gain), but the precision is valuable for observations made in spectral regions remote from telluric lines or captive-gas fiducials. Instrument builders might consider the advantages of the CAFE optics which incorporate agitation and invert the object and pupil for slit and grating illumination in future spectrograph designs.Comment: 12 pages, 3 figure

    Systematic Bias In Baroclinic Energy Estimates In Shelf Seas

    Get PDF
    A simple model of an internal wave advected by an oscillating barotropic flow suggests flaws in standard approaches to estimating properties of the internal tide. When the M2 barotropic tidal current amplitude is of similar size to the phase speed of the M2 baroclinic tide, spectral and harmonic analysis techniques lead to erroneous estimates of the amplitude, phase, and energy in the M2 internal tide. In general, harmonic fits and bandpass or low-pass filters that attempt to isolate the lowest M2 harmonic significantly underestimate the strength of M2 baroclinic energy fluxes in shelf seas. Baroclinic energy flux estimates may show artificial spatial variability, giving the illusion of sources and sinks of energy where none are actually present. Analysis of previously published estimates of baroclinic energy fluxes in the Celtic Sea suggests this mechanism may lead to values being 25%–60% too low

    Storms modify baroclinic energy fluxes in a seasonally stratified shelf sea: inertial-tidal interaction

    Get PDF
    Observations made near the Celtic Sea shelf edge are used to investigate the interaction between wind-generated near-inertial oscillations and the semidiurnal internal tide. Linear, baroclinic energy fluxes within the near-inertial (f) and semidiurnal (M2) wave bands are calculated from measurements of velocity and density structure at two moorings located 40 km from the internal tidal generation zone. Over the 2 week deployment period, the semidiurnal tide drove 28–48 W m−1 of energy directly on-shelf. Little spring-neap variability could be detected. Horizontal near-inertial energy fluxes were an order of magnitude weaker, but nonlinear interaction between the vertical shear of inertial oscillations and the vertical velocity associated with the semidiurnal internal tide led to a 25–43% increase in positive on-shelf energy flux. The phase relationship between f and M2 determines whether this nonlinear interaction enhances or dampens the linear tidal component of the flux, and introduces a 2 day counter-clockwise beating to the energy transport. Two very clear contrasting regimes of (a) tidally and (b) inertially driven shear and energy flux are captured in the observations

    A Planetary Companion to gamma Cephei A

    Full text link
    We report on the detection of a planetary companion in orbit around the primary star of the binary system γ\gamma Cephei. High precision radial velocity measurements using 4 independent data sets spanning the time interval 1981--2002 reveal long-lived residual radial velocity variations superimposed on the binary orbit that are coherent in phase and amplitude with a period or 2.48 years (906 days) and a semi-amplitude of 27.5 m s1^{-1}. We performed a careful analysis of our Ca II H & K S-index measurements, spectral line bisectors, and {\it Hipparcos} photometry. We found no significant variations in these quantities with the 906-d period. We also re-analyzed the Ca II λ\lambda8662 {\AA} measurements of Walker et al. (1992) which showed possible periodic variations with the ``planet'' period when first published. This analysis shows that periodic Ca II equivalent width variations were only present during 1986.5 -- 1992 and absent during 1981--1986.5. Furthermore, a refined period for the Ca II λ\lambda8662 {\AA} variations is 2.14 yrs, significantly less than residual radial velocity period. The most likely explanation of the residual radial velocity variations is a planetary mass companion with MM sin ii = 1.7 MJupiterM_{Jupiter} and an orbital semi-major axis of a2a_2 == 2.13 AU. This supports the planet hypothesis for the residual radial velocity variations for γ\gamma Cep first suggested by Walker et al. (1992). With an estimated binary orbital period of 57 years γ\gamma Cep is the shortest period binary system in which an extrasolar planet has been found. This system may provide insights into the relationship between planetary and binary star formation.Comment: 19 pages, 15 figures, accepted in Ap. J. Includes additional data and improved orbital solutio

    Baroclinic energy flux at the continental shelf edge modified by wind-mixing

    Get PDF
    Temperature and current measurements from two moorings onshore of the Celtic Sea shelf break, a well-known hot spot for tidal energy conversion, show the impact of passing summer storms on the baroclinic wavefield. Wind-driven vertical mixing changed stratification to permit an increased on-shelf energy transport, and baroclinic energy in the semidiurnal band appeared at the moorings 1–4 days after the storm mixed the upper 50 m of the water column. The timing of the maximum in the baroclinic energy flux is consistent with the propagation of the semidiurnal internal tide from generation sites at the shelf break to the moorings 40 km away. Also, the ∼3 day duration of the peak in M2 baroclinic energy flux at the moorings corresponds to the restratification time scale following the first storm

    The Extrasolar Planet epsilon Eridani b - Orbit and Mass

    Full text link
    Hubble Space Telescope observations of the nearby (3.22 pc), K2 V star epsilon Eridani have been combined with ground-based astrometric and radial velocity data to determine the mass of its known companion. We model the astrometric and radial velocity measurements simultaneously to obtain the parallax, proper motion, perturbation period, perturbation inclination, and perturbation size. Because of the long period of the companion, \eps b, we extend our astrometric coverage to a total of 14.94 years (including the three year span of the \HST data) by including lower-precision ground-based astrometry from the Allegheny Multichannel Astrometric Photometer. Radial velocities now span 1980.8 -- 2006.3. We obtain a perturbation period, P = 6.85 +/- 0.03 yr, semi-major axis, alpha =1.88 +/- 0.20 mas, and inclination i = 30.1 +/- 3.8 degrees. This inclination is consistent with a previously measured dust disk inclination, suggesting coplanarity. Assuming a primary mass M_* = 0.83 M_{\sun}, we obtain a companion mass M = 1.55 +/- 0.24 M_{Jup}. Given the relatively young age of epsilon Eri (~800 Myr), this accurate exoplanet mass and orbit can usefully inform future direct imaging attempts. We predict the next periastron at 2007.3 with a total separation, rho = 0.3 arcsec at position angle, p.a. = -27 degrees. Orbit orientation and geometry dictate that epsilon Eri b will appear brightest in reflected light very nearly at periastron. Radial velocities spanning over 25 years indicate an acceleration consistent with a Jupiter-mass object with a period in excess of 50 years, possibly responsible for one feature of the dust morphology, the inner cavity

    Evidence for a Long-period Planet Orbiting Epsilon Eridani

    Full text link
    High precision radial velocity (RV) measurements spanning the years 1980.8--2000.0 are presented for the nearby (3.22 pc) K2 V star ϵ\epsilon Eri. These data, which represent a combination of six independent data sets taken with four different telescopes, show convincing variations with a period of \approx 7 yrs. A least squares orbital solution using robust estimation yields orbital parameters of period, PP = 6.9 yrs, velocity KK-amplitude == 19 {\ms}, eccentricity ee == 0.6, projected companion mass MM sin ii = 0.86 MJupiterM_{Jupiter}, and semi-major axis a2a_2 == 3.3 AU. Ca II H&K S-index measurements spanning the same time interval show significant variations with periods of 3 and 20 yrs, yet none at the RV period. If magnetic activity were responsible for the RV variations then it produces a significantly different period than is seen in the Ca II data. Given the lack of Ca II variation with the same period as that found in the RV measurements, the long-lived and coherent nature of these variations, and the high eccentricity of the implied orbit, Keplerian motion due to a planetary companion seems to be the most likely explanation for the observed RV variations. The wide angular separation of the planet from the star (approximately 1 arc-second) and the long orbital period make this planet a prime candidate for both direct imaging and space-based astrometric measurements.Comment: To appear in Astrophysical Journal Letters. 9 pages, 2 figure

    Deep-ocean mixing driven by small-scale internal tides

    Get PDF
    Turbulent mixing in the ocean is key to regulate the transport of heat, freshwater and biogeochemical tracers, with strong implications for Earth’s climate. In the deep ocean, tides supply much of the mechanical energy required to sustain mixing via the generation of internal waves, known as internal tides, whose fate—the relative importance of their local versus remote breaking into turbulence—remains uncertain. Here, we combine a semi-analytical model of internal tide generation with satellite and in situ measurements to show that from an energetic viewpoint, small-scale internal tides, hitherto overlooked, account for the bulk (>50%) of global internal tide generation, breaking and mixing. Furthermore, we unveil the pronounced geographical variations of their energy proportion, ignored by current parameterisations of mixing in climate-scale models. Based on these results, we propose a physically consistent, observationally supported approach to accurately represent the dissipation of small-scale internal tides and their induced mixing in climate-scale models

    Teaching and learning about dementia in UK medical schools: a national survey

    Get PDF
    Background: Dementia is an increasingly common condition and all doctors, in both primary and secondary care environments, must be prepared to competently manage patients with this condition. It is unclear whether medical education about dementia is currently fit for purpose. This project surveys and evaluates the nature of teaching and learning about dementia for medical students in the UK. Methods: Electronic questionnaire sent to UK medical schools. Results: 23/31 medical schools responded. All provided some dementia-specific teaching but this focussed more on knowledge and skills than behaviours and attitudes. Only 80% of schools described formal assessment of dementia-specific learning outcomes. There was a widespread failure to adequately engage the multidisciplinary team, patients and carers in teaching, presenting students with a narrow view of the condition. However, some innovative approaches were also highlighted. Conclusions: Although all schools taught about dementia, the deficiencies identified represent a failure to sufficiently equip medical students to care for patients with dementia which, given the prevalence of the condition, does not adequately prepare them for work as doctors. Recommendations for improving undergraduate medical education about dementia are outline
    corecore