121 research outputs found

    Impact of Maternal Periodontitis on Preterm Birth and Low Birth Weight in Babies: Results of a Scoping Review

    Get PDF
    Background Periodontitis has been documented as public health concern but its association with preterm and low birth weight remains uncertain, thus the objective of this scoping review is to summarize the most recent published evidence related to the impact of periodontitis on preterm birth and low birth weight in order to improve public awareness and to inform policies for oral health during pregnancy. Methods Hinari, PubMed, and Google Scholar were searched to acquire the published literature. The retrieved studies included cross-sectional, case control studies and randomized controlled trials with available full text published in English from 2008 to 2019. Results After combining the key words, 333 articles were identified with only 133 eligible articles published from 2008 to 2019. After reviewing the available 50 full text articles, duplicates were removed and 15 studies fully met the inclusion criteria. There were 13 articles that supported the association between maternal periodontitis and preterm low birth weight while 2 found no evidence to support the association. Conclusion The results of this scoping review contribute to an increasing body of evidence to support the hypothesis that maternal periodontal disease may be a risk factor for preterm delivery and low birth weight. Rwanda J Med Health Sci 2020;3(3):372-38

    Dopamine terminals from the ventral tegmental area gate intrinsic inhibition in the prefrontal cortex.

    Get PDF
    Spike frequency adaptation (SFA or accommodation) and calcium-activated potassium channels that underlie after-hyperpolarization potentials (AHP) regulate repetitive firing of neurons. Precisely how neuromodulators such as dopamine from the ventral tegmental area (VTA) regulate SFA and AHP (together referred to as intrinsic inhibition) in the prefrontal cortex (PFC) remains unclear. Using whole cell electrophysiology, we measured intrinsic inhibition in prelimbic (PL) layer 5 pyramidal cells of male adult rats. Results demonstrate that bath application of dopamine reduced intrinsic inhibition (EC50: 25.0 μmol/L). This dopamine action was facilitated by coapplication of cocaine (1 μmol/L), a blocker of dopamine reuptake. To evaluate VTA dopamine terminals in PFC slices, we transfected VTA dopamine cells of TH::Cre rats in vivo with Cre-dependent AAVs to express channelrhodopsin-2 (ChR2) or designer receptors exclusively activated by designer drugs (DREADDS). In PFC slices from these animals, stimulation of VTA terminals with either blue light to activate ChR2 or bath application of clozapine-N-oxide (CNO) to activate Gq-DREADDs produced a similar reduction in intrinsic inhibition in PL neurons. Electrophysiological recordings from cells expressing retrograde fluorescent tracers showed that this plasticity occurs in PL neurons projecting to the accumbens core. Collectively, these data highlight an ability of VTA terminals to gate intrinsic inhibition in the PFC, and under appropriate circumstances, enhance PL neuronal firing. These cellular actions of dopamine may be important for dopamine-dependent behaviors involving cocaine and cue-reward associations within cortical-striatal circuits

    The Floor of Yellowstone Lake is Anything but Quiet—New Discoveries from High-Resolution Sonar Imaging, Seismic- Reflection Profiling, and Submersible Studies

    Get PDF
    Discoveries from multibeam sonar mapping and seis-mic-reflection surveys of Yellowstone Lake provide new insight into the recent geologic forces that have shaped a large lake at the active front of the Yellowstone hot spot, a region strongly affected by young (\u3c2 \u3em.y.), large-volume (\u3e100–1,000s km3) silicic volcanism, active tectonism, and accompanying uplift. Specifically, our mapping has identified the extent of postcaldera-collapse volcanism and active hydrothermal processes occurring above a large magma chamber beneath the lake floor. Multiple advances and recessions of thick glacial ice have overlapped volcanic and hydrothermal activity leaving a lake basin that has been shaped predominantly by fire and ice. Yellowstone Lake has an irregular bottom covered with dozens of features directly related to hydrothermal, tectonic, volcanic,and sedimentary processes. Detailed bathymetric, seismic-reflection, and magnetic evidence reveals that rhyolitic lava flows underlie much of Yellowstone Lake and exert fundamental control on lake morphology and localization of hydrothermal activity in the northern, West Thumb, and central basins. Many previously unknown features have been identified and include more than 660 hydrothermal vents, several very large (\u3e500-m diameter) hydrothermal-explosion craters, many small hydrothermal-vent craters (~1-to 200-m diameter), domed lacustrine sediments related to hydrothermal activity, elongate fissures cutting postglacial sediments, siliceous hydrothermal-spire structures, sublacustrine landslide deposits, submerged former shorelines, large glacial melting features, incipient faulting along the trace of the Eagle Bay fault zone, and a recently active graben. Sampling and observations with a submersible remotely operated vehicle confirm and extend our understanding of the identified features. Faults, fissures, hydrothermally inflated domal structures, hydrothermal-explosion craters, and sublacustrine landslides constitute potentially significant geologic hazards. Toxic elements derived from hydrothermal processes also may significantly affect the Yellowstone ecosystem

    The Floor of Yellowstone Lake is Anything but Quiet—New Discoveries from High-Resolution Sonar Imaging, Seismic- Reflection Profiling, and Submersible Studies

    Get PDF
    Discoveries from multibeam sonar mapping and seis-mic-reflection surveys of Yellowstone Lake provide new insight into the recent geologic forces that have shaped a large lake at the active front of the Yellowstone hot spot, a region strongly affected by young (\u3c2 \u3em.y.), large-volume (\u3e100–1,000s km3) silicic volcanism, active tectonism, and accompanying uplift. Specifically, our mapping has identified the extent of postcaldera-collapse volcanism and active hydrothermal processes occurring above a large magma chamber beneath the lake floor. Multiple advances and recessions of thick glacial ice have overlapped volcanic and hydrothermal activity leaving a lake basin that has been shaped predominantly by fire and ice. Yellowstone Lake has an irregular bottom covered with dozens of features directly related to hydrothermal, tectonic, volcanic,and sedimentary processes. Detailed bathymetric, seismic-reflection, and magnetic evidence reveals that rhyolitic lava flows underlie much of Yellowstone Lake and exert fundamental control on lake morphology and localization of hydrothermal activity in the northern, West Thumb, and central basins. Many previously unknown features have been identified and include more than 660 hydrothermal vents, several very large (\u3e500-m diameter) hydrothermal-explosion craters, many small hydrothermal-vent craters (~1-to 200-m diameter), domed lacustrine sediments related to hydrothermal activity, elongate fissures cutting postglacial sediments, siliceous hydrothermal-spire structures, sublacustrine landslide deposits, submerged former shorelines, large glacial melting features, incipient faulting along the trace of the Eagle Bay fault zone, and a recently active graben. Sampling and observations with a submersible remotely operated vehicle confirm and extend our understanding of the identified features. Faults, fissures, hydrothermally inflated domal structures, hydrothermal-explosion craters, and sublacustrine landslides constitute potentially significant geologic hazards. Toxic elements derived from hydrothermal processes also may significantly affect the Yellowstone ecosystem

    Lymphocytic infiltration in stage II microsatellite stable colorectal tumors: A retrospective prognosis biomarker analysis

    Get PDF
    Background: Identifying stage II patients with colorectal cancer (CRC) at higher risk of progression is a clinical priority in order to optimize the advantages of adjuvant chemotherapy while avoiding unnecessary toxicity. Recently, the intensity and the quality of the host immune response in the tumor microenvironment have been reported to have an important role in tumorigenesis and an inverse association with tumor progression. This association is well established in microsatellite instable CRC. In this work, we aim to assess the usefulness of measures of T-cell infiltration as prognostic biomarkers in 640 stage II, CRC tumors, 582 of them confirmed microsatellite stable. Methods and findings: We measured both the quantity and clonality index of T cells by means of T-cell receptor (TCR) immunosequencing in a discovery dataset (95 patients with colon cancer diagnosed at stage II and microsatellite stable, median age 67, 30% women) and replicated the results in 3 additional series of stage II patients from 2 countries. Series 1 and 2 were recruited in Barcelona, Spain and included 112 fresh frozen (FF, median age 69, 44% women) and 163 formalin-fixed paraffin-embedded (FFPE, median age 67, 39% women) samples, respectively. Series 3 included 270 FFPE samples from patients recruited in Haifa, Northern Israel, as part of a large case-control study of CRC (median age 73, 46% women). Median follow-up time was 81.1 months. Cox regression models were fitted to evaluate the prognostic value of T-cell abundance and Simpson clonality of TCR variants adjusting by sex, age, tumor location, and stage (IIA and IIB). In the discovery dataset, higher TCR abundance was associated with better prognosis (hazard ratio [HR] for ≥Q1 = 0.25, 95% CI 0.10-0.63, P = 0.003). A functional analysis of gene expression on these tumors revealed enrichment in pathways related to immune response. Higher values of clonality index (lower diversity) were not associated with worse disease-free survival, though the HR for ≥Q3 was 2.32 (95% CI 0.90-5.97, P = 0.08). These results were replicated in an independent FF dataset (TCR abundance: HR = 0.30, 95% CI 0.12-0.72, P = 0.007; clonality: HR = 3.32, 95% CI 1.38-7.94, P = 0.007). Also, the association with prognosis was tested in 2 independent FFPE datasets. The same association was observed with TCR abundance (HR = 0.41, 95% CI 0.18-0.93, P = 0.03 and HR = 0.56, 95% CI 0.31-1, P = 0.042, respectively, for each FFPE dataset). However, the clonality index was associated with prognosis only in the FFPE dataset from Israel (HR = 2.45, 95% CI 1.39-4.32, P = 0.002). Finally, a combined analysis combining all microsatellite stable (MSS) samples demonstrated a clear prognosis value both for TCR abundance (HR = 0.39, 95% CI 0.26-0.57, P = 1.3e-06) and the clonality index (HR = 2.13, 95% CI 1.44-3.15, P = 0.0002). These associations were also observed when variables were considered continuous in the models (HR per log2 of TCR abundance = 0.85, 95% CI 0.78-0.93, P = 0.0002; HR per log2 or clonality index = 1.16, 95% CI 1.03-1.31, P = 0.016). Limitations: This is a retrospective study, and samples had been preserved with different methods. Validation series lack complete information about microsatellite instability (MSI) status and pathology assessment. The Molecular Epidemiology of Colorectal Cancer (MECC) study had information about overall survival instead of progression-free survival. Conclusion: Results from this study demonstrate that tumor lymphocytes, assessed by TCR repertoire quantification based on a sequencing method, are an independent prognostic factor in microsatellite stable stage II CRC

    Recruitment and follow-up of adolescent and young adult cancer survivors: the AYA HOPE Study

    Get PDF
    IntroductionCancer is rare in adolescents and young adults (AYA), but these patients have seen little improvement in survival in contrast to most other age groups. Furthermore, participation in research by AYAs is typically low. We conducted a study to examine the feasibility of recruiting a population-based sample of AYA survivors to examine issues of treatment and health outcomes.MethodsIndividuals diagnosed in 2007-08 and age 15-39 at the time of diagnosis with acute lymphocytic leukemia, Hodgkin lymphoma, non-Hodgkin lymphoma, germ cell cancer or sarcoma were identified by 7 Surveillance, Epidemiology, and End-Results (SEER) cancer registries, mailed surveys within 14 months after diagnosis and again a year later, and had medical records reviewed.Results525 (43%) of the eligible patients responded, 39% refused and 17% were lost to follow-up. Extensive efforts were required for most potential respondents (87%). 76% of respondents completed the paper rather than online survey version. In a multivariate model, age, cancer site, education and months from diagnosis to the first mailing of the survey were not associated with participation, although males (p  <  0.01), Hispanics and non-Hispanic blacks (p  <  0.001) were less likely to participate. 91% of survivors completing the initial survey completed the subsequent survey.DiscussionDespite the response rate, those who participated adequately reflected the population of AYA cancer survivors. The study demonstrates that cancer registries are valuable foundations for conducting observational, longitudinal population-based research on AYA cancer survivors.Implications for cancer survivorsAchieving a reasonable response rate in this population is possible, but requires extensive resources

    The First Flight of the Marshall Grazing Incidence X-ray Spectrometer (MaGIXS)

    Get PDF
    The Marshall Grazing Incidence X-ray Spectrometer (MaGIXS) sounding rocket experiment launched on July 30, 2021 from the White Sands Missile Range in New Mexico. MaGIXS is a unique solar observing telescope developed to capture X-ray spectral images, in the 6 - 24 Angstrom wavelength range, of coronal active regions. Its novel design takes advantage of recent technological advances related to fabricating and optimizing X-ray optical systems as well as breakthroughs in inversion methodologies necessary to create spectrally pure maps from overlapping spectral images. MaGIXS is the first instrument of its kind to provide spatially resolved soft X-ray spectra across a wide field of view. The plasma diagnostics available in this spectral regime make this instrument a powerful tool for probing solar coronal heating. This paper presents details from the first MaGIXS flight, the captured observations, the data processing and inversion techniques, and the first science results.Comment: 20 pages, 18 figure
    • …
    corecore