68 research outputs found

    Micron-scale intrashell oxygen isotope variation in cultured planktic foraminifers

    Get PDF
    In this study, we show that the rate of shell precipitation in the extant planktic foraminifer Orbulina universa is sufficiently rapid that 12 h calcification periods in 18O-labeled seawater can be resolved and accurately measured using secondary ion mass spectrometry (SIMS) for in situ ÎŽ18O analyses. Calcifying O. universa held at constant temperature (22 °C) were transferred every 12 h between ambient seawater (ÎŽ18Ow = −0.4‰ VSMOW) and seawater with enriched barium and ÎŽ18Ow = +18.6‰ VSMOW, to produce geochemically distinct layers of calcite, separated by calcite precipitated with an ambient geochemical signature. We quantify the position of the Ba-labeled calcite in the shell wall of O. universa via laser ablation ICP-MS depth profiling of trace element ratios, and then measure intrashell ÎŽ18Ocalcite in the same shells using SIMS with a 3 ÎŒm spot and an average precision of 0.6‰ (±2 SD). Measured ÎŽ18Ocalcite values in O. universa shell layers are within ±1.1‰ of predicted ÎŽ18Ocalcite values. Elemental and oxygen isotope data show that LA-ICP-MS and SIMS measurements can be cross-correlated within the spatial resolution of the two analytical techniques, and that ÎŽ18Ocalcite and elemental tracers appear to be precipitated synchronously with no measurable spatial offsets. These results demonstrate the capability of SIMS to resolve daily growth increments in foraminifer shells, and highlight its potential for paleoceanographic and biomineralization applications on microfossils

    Last interglacial (MIS 5e) sea-level determined from a tectonically stable, far-field location, Eyre Peninsula, southern Australia

    Get PDF
    The last interglacial maximum (Marine Isotope Substage 5e [MIS 5e], 128¿116 ka) is a distinctive event in recent Earth history. Shoreline successions of this age are important for calibrating climate models and defining the overall behaviour of the crust¿mantle system to fluctuating ice and ocean-water volumes. In a global context, the recently intensified interest in last interglacial shoreline successions has revealed considerable variability in the magnitude of sea-level rise during this time interval and highlighted the need to examine paleosea-level evidence from tectonically stable, far-field settings. Situated in the far-field of continental ice sheets and on the tectonically stable Gawler Craton, the 300 km coastal sector of western Eyre Peninsula between Fowlers Bay and Lake Newland in southern Australia represents an important region for defining the glacio-eustatic (ice-equivalent) sea-level attained during the last interglacial maximum based on the relative sea-level observations from this region. Low-energy, shoaling upward, peritidal bioclastic carbonate successions of the last interglacial (locally termed Glanville Formation) formed within back-barrier, estuarine¿lagoonal environments in the lee of eolianite barrier complexes (locally termed Bridgewater Formation) along this coastline. The well-preserved shelly successions (coquinas) contain diverse molluscan fossil assemblages including species no longer living in the coastal waters of South Australia (e.g. the Sydney cockle Anadara trapezia and the benthic foraminifer Marginopora vertebralis). The extent of amino acid racemisation (a measure of fossil age based on increasing d/l value) in a range of species, and in particular A. trapezia and Katelysia sp., confirms the time equivalence of the isolated embayment-fill successions, correlated with the informal type section of the Glanville Formation at Dry Creek, north of Adelaide. Preliminary U-series analyses on A. trapezia also suggest a correlation with the last interglacial maximum, but further highlight the complexity in dating fossil molluscs by the U-series method in view of their open-system behaviour. The shelly successions of the Glanville Formation occur at elevations higher than attained by sea-level in the current, Holocene interglacial. A higher sea-level of between 2.1 ± 0.5 and 4 ± 0.5 m above present sea-level is inferred for the last interglacial maximum (MIS 5e) along this coastline based on the elevation of sedimentary successions host to the shallow subtidal¿intertidal fossil molluscs Katelysia sp., and Anadara trapezia. The paleosea-level observations place a lower limit on the sea-level attained during the last interglacial maximum and suggest that caution be exercised in the definition of the upper limit of sea-level during this interglacial

    Timing and mechanism for intratest Mg/Ca variability in a living planktic foraminifer

    Get PDF
    Geochemical observations indicate that planktic foraminifer test Mg/Ca is heterogeneous in many species, thereby challenging its use as a paleotemperature proxy for paleoceanographic reconstructions. We present Mg/Ca and Ba/Ca data collected by laser ablation ICP-MS from the shells of Orbulina universa cultured in controlled laboratory experiments. Test calcite was labeled with Ba-spiked seawater for 12 h day or night calcification periods to quantify the timing of intratest Mg-banding across multiple diurnal cycles. Results demonstrate that high Mg bands are precipitated during the night whereas low Mg bands are precipitated during the day. Data obtained from specimens growing at 20 °C and 25 °C show that Mg/Ca ratios in both high and low Mg bands increase with temperature, and average test Mg/Ca ratios are in excellent agreement with previously published empirical calibrations based on bulk solution ICP-MS analyses. In general, Mg band concentrations decrease with increasing pH and/or [CO2−3] but this effect decreases as experimental temperatures increase from 20 °C to 25 °C. We suggest that mitochondrial uptake of Mg2+ from the thin calcifying fluid beneath streaming rhizopodial filaments may provide the primary locus for Mg2+ removal during test calcification, and that diurnal variations in either mitochondrial density or activity produce Mg banding. These results demonstrate that Mg banding is an inherent component of test biomineralization in O. universa and show that the Mg/Ca paleothermometer remains a fundamental tool for reconstructing past ocean temperatures from fossil foraminifers

    Uncertainties in seawater thermometry deriving from intratest and intertest Mg/Ca variability in <em>Globigerinoides ruber</em>

    Get PDF
    Laser ablation inductively coupled plasma-mass spectrometry microanalysis of fossil and live Globigerinoides ruber from the eastern Indian Ocean reveals large variations of Mg/Ca composition both within and between individual tests from core top or plankton pump samples. Although the extent of intertest and intratest compositional variability exceeds that attributable to calcification temperature, the pooled mean Mg/Ca molar values obtained for core top samples between the equator and &gt;30°S form a strong exponential correlation with mean annual sea surface temperature (Mg/Ca mmol/mol = 0.52 exp0.076SST°C, r2 = 0.99). The intertest Mg/Ca variability within these deep-sea core top samples is a source of significant uncertainty in Mg/Ca seawater temperature estimates and is notable for being site specific. Our results indicate that widely assumed uncertainties in Mg/Ca thermometry may be underestimated. We show that statistical power analysis can be used to evaluate the number of tests needed to achieve a target level of uncertainty on a sample by sample case. A varying bias also arises from the presence and varying mix of two morphotypes (G. ruber ruber and G. ruber pyramidalis), which have different mean Mg/Ca values. Estimated calcification temperature differences between these morphotypes range up to 5°C and are notable for correlating with the seasonal range in seawater temperature at different sites. Copyright 2008 by the American Geophysical Union

    The Influence of Salinity on Mg/Ca in Planktic Foraminifers – Evidence from Cultures, Core-top Sediments and Complementary ή18O

    Get PDF
    The Mg/Ca ratio in foraminiferal calcite is one of the principal proxies used for paleoceanographic temperature reconstructions, but recent core-top sediment observations suggest that salinity may exert a significant secondary control on planktic foraminifers. This study compiles new and published laboratory culture experiment data from the planktic foraminifers Orbulina universa, Globigerinoides sacculifer and Globigerinoides ruber, in which salinity was varied but temperature, pH and light were held constant. Combining new data with results from previous culture studies yields a Mg/Ca-sensitivity to salinity of 4.4 ± 2.3%, 4.7 ± 1.2%, and 3.3 ± 1.7% per salinity unit (95% confidence), respectively, for the three foraminifer species studied here. Comparison of these sensitivities with core-top data suggests that the much larger sensitivity (27 ± 4% per salinity unit) derived from Atlantic core-top sediments in previous studies is not a direct effect of salinity. Rather, we suggest that the dissolution correction often applied to Mg/Ca data can lead to significant overestimation of temperatures. We are able to reconcile culture calibrations with core-top observations by combining evidence for seasonal occurrence and latitude-specific habitat depth preferences with corresponding variations in physico-chemical environmental parameters. Although both Mg/Ca and Ύ18O yield temperature estimates that fall within the bounds of hydrographic observations, discrepancies between the two proxies highlight unresolved challenges with the use of paired Mg/Ca and Ύ18O analyses to reconstruct paleo-salinity patterns across ocean basins. The first step towards resolving these challenges requires a better spatially and seasonally resolved Ύ18Osw archive than is currently available. Nonetheless, site-specific reconstructions of salinity change through time may be valid

    Dating of the hominid (homo neanderthalensis) remains accumulation from el sidrón cave (piloña, asturias, north spain): An example of a multi-methodological approach to the dating of upper pleistocene sites

    Get PDF
    The age of Neanderthal remains and associated sediments from El SidrĂłn cave has been obtained through different dating methods (14CAMS, U/TH, OSL, ESR and AAR) and samples (charcoal debris, bone, tooth dentine, stalagmitic flowstone, carbonate-rich sedi

    El grupu neandertal de la Cueva d'El Sidrón (Borines, Piloña)

    Get PDF
    Na monografĂ­a clĂĄsica de Puig y Larraz (1896: 250-252) amiĂ©ntense delles cavidaes del Conceyu de Piloña, pero non la Cueva d’El SidrĂłn (Fig. 1). Esta conocĂ­ase, ensin dulda, dende la Guerra Civil y el maquis al servir d’abellugu a persiguĂ­os polĂ­ticos, y guarda una alcordanza imborrable nuna de les sos mĂșltiples entraes, yĂĄ qu’ellĂ­ ta enterrada Olvido Otero GonzĂĄlez (1908-1938). Per El SidrĂłn pasaron munches persones a lo llargo de los años, pero en 1994 prodĂșxose’l descubrimientu per parte d’unos espeleĂłlogos xixoneses d’unos gĂŒesos humanos que dieron un importante xiru a la conocencia de los nuesos antepasaos neandertales.Peer Reviewe
    • 

    corecore