22 research outputs found

    iPSC-Derived Dopamine Neurons Reveal Differences between Monozygotic Twins Discordant for Parkinson’s Disease

    Get PDF
    SummaryParkinson’s disease (PD) has been attributed to a combination of genetic and nongenetic factors. We studied a set of monozygotic twins harboring the heterozygous glucocerebrosidase mutation (GBA N370S) but clinically discordant for PD. We applied induced pluripotent stem cell (iPSC) technology for PD disease modeling using the twins’ fibroblasts to evaluate and dissect the genetic and nongenetic contributions. Utilizing fluorescence-activated cell sorting, we obtained a homogenous population of “footprint-free” iPSC-derived midbrain dopaminergic (mDA) neurons. The mDA neurons from both twins had ∌50% GBA enzymatic activity, ∌3-fold elevated α-synuclein protein levels, and a reduced capacity to synthesize and release dopamine. Interestingly, the affected twin’s neurons showed an even lower dopamine level, increased monoamine oxidase B (MAO-B) expression, and impaired intrinsic network activity. Overexpression of wild-type GBA and treatment with MAO-B inhibitors normalized α-synuclein and dopamine levels, suggesting a combination therapy for the affected twin

    The evolving SARS-CoV-2 epidemic in Africa: Insights from rapidly expanding genomic surveillance

    Get PDF
    INTRODUCTION Investment in Africa over the past year with regard to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) sequencing has led to a massive increase in the number of sequences, which, to date, exceeds 100,000 sequences generated to track the pandemic on the continent. These sequences have profoundly affected how public health officials in Africa have navigated the COVID-19 pandemic. RATIONALE We demonstrate how the first 100,000 SARS-CoV-2 sequences from Africa have helped monitor the epidemic on the continent, how genomic surveillance expanded over the course of the pandemic, and how we adapted our sequencing methods to deal with an evolving virus. Finally, we also examine how viral lineages have spread across the continent in a phylogeographic framework to gain insights into the underlying temporal and spatial transmission dynamics for several variants of concern (VOCs). RESULTS Our results indicate that the number of countries in Africa that can sequence the virus within their own borders is growing and that this is coupled with a shorter turnaround time from the time of sampling to sequence submission. Ongoing evolution necessitated the continual updating of primer sets, and, as a result, eight primer sets were designed in tandem with viral evolution and used to ensure effective sequencing of the virus. The pandemic unfolded through multiple waves of infection that were each driven by distinct genetic lineages, with B.1-like ancestral strains associated with the first pandemic wave of infections in 2020. Successive waves on the continent were fueled by different VOCs, with Alpha and Beta cocirculating in distinct spatial patterns during the second wave and Delta and Omicron affecting the whole continent during the third and fourth waves, respectively. Phylogeographic reconstruction points toward distinct differences in viral importation and exportation patterns associated with the Alpha, Beta, Delta, and Omicron variants and subvariants, when considering both Africa versus the rest of the world and viral dissemination within the continent. Our epidemiological and phylogenetic inferences therefore underscore the heterogeneous nature of the pandemic on the continent and highlight key insights and challenges, for instance, recognizing the limitations of low testing proportions. We also highlight the early warning capacity that genomic surveillance in Africa has had for the rest of the world with the detection of new lineages and variants, the most recent being the characterization of various Omicron subvariants. CONCLUSION Sustained investment for diagnostics and genomic surveillance in Africa is needed as the virus continues to evolve. This is important not only to help combat SARS-CoV-2 on the continent but also because it can be used as a platform to help address the many emerging and reemerging infectious disease threats in Africa. In particular, capacity building for local sequencing within countries or within the continent should be prioritized because this is generally associated with shorter turnaround times, providing the most benefit to local public health authorities tasked with pandemic response and mitigation and allowing for the fastest reaction to localized outbreaks. These investments are crucial for pandemic preparedness and response and will serve the health of the continent well into the 21st century

    Development of Cannabinoid 1 Receptor Protein and Messenger RNA in Monkey Dorsolateral Prefrontal Cortex

    No full text
    Adolescent cannabis use is associated with an increased risk of schizophrenia and with impairments in cognitive processes reliant on the circuitry of the dorsolateral prefrontal cortex (DLPFC). Additionally, maternal cannabis use is associated with cognitive dysfunction in offspring. The effects of cannabis are mediated by the cannabinoid 1 receptor (CB1R), which is present in high density in the primate DLPFC. In order to determine how developmental changes in CB1Rs might render DLPFC circuitry vulnerable to cannabis exposure, we examined the density and innervation patterns of CB1R-immunoreactive (IR) axons and the expression of CB1R mRNA in the DLPFC from 81 macaque monkeys, ranging in age from embryonic 82 days to 18 years. Overall CB1R immunoreactivity in the gray matter robustly increased during the perinatal period and achieved adult levels by 1 week postnatal. However, laminar analyses revealed that CB1R-IR axon density significantly decreased with age in layers 1–2 but significantly increased in layer 4, especially during adolescence. In contrast, CB1R mRNA levels were highest 1 week postnatal, declined over the next 2 months, and then remained unchanged into adulthood. These findings provide a potential substrate for discrete, age-dependent effects of cannabis exposure on the maturation of primate DLPFC circuitry

    SARS-CoV-2 Infections in Vaccinated and Unvaccinated Populations in Camp Lemonnier, Djibouti, from April 2020 to January 2022

    No full text
    The global pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has highlighted the disparity between developed and developing countries for infectious disease surveillance and the sequencing of pathogen genomes. The majority of SARS-CoV-2 sequences published are from Europe, North America, and Asia. Between April 2020 and January 2022, 795 SARS-CoV-2-positive nares swabs from individuals in the U.S. Navy installation Camp Lemonnier, Djibouti, were collected, sequenced, and analyzed. In this study, we described the results of genomic sequencing and analysis for 589 samples, the first published viral sequences for Djibouti, including 196 cases of vaccine breakthrough infections. This study contributes to the knowledge base of circulating SARS-CoV-2 lineages in the under-sampled country of Djibouti, where only 716 total genome sequences are available at time of publication. Our analysis resulted in the detection of circulating variants of concern, mutations of interest in lineages in which those mutations are not common, and emerging spike mutations
    corecore