28 research outputs found

    Outcome of the First wwPDB/CCDC/D3R Ligand Validation Workshop.

    Get PDF
    Crystallographic studies of ligands bound to biological macromolecules (proteins and nucleic acids) represent an important source of information concerning drug-target interactions, providing atomic level insights into the physical chemistry of complex formation between macromolecules and ligands. Of the more than 115,000 entries extant in the Protein Data Bank (PDB) archive, ∼75% include at least one non-polymeric ligand. Ligand geometrical and stereochemical quality, the suitability of ligand models for in silico drug discovery and design, and the goodness-of-fit of ligand models to electron-density maps vary widely across the archive. We describe the proceedings and conclusions from the first Worldwide PDB/Cambridge Crystallographic Data Center/Drug Design Data Resource (wwPDB/CCDC/D3R) Ligand Validation Workshop held at the Research Collaboratory for Structural Bioinformatics at Rutgers University on July 30-31, 2015. Experts in protein crystallography from academe and industry came together with non-profit and for-profit software providers for crystallography and with experts in computational chemistry and data archiving to discuss and make recommendations on best practices, as framed by a series of questions central to structural studies of macromolecule-ligand complexes. What data concerning bound ligands should be archived in the PDB? How should the ligands be best represented? How should structural models of macromolecule-ligand complexes be validated? What supplementary information should accompany publications of structural studies of biological macromolecules? Consensus recommendations on best practices developed in response to each of these questions are provided, together with some details regarding implementation. Important issues addressed but not resolved at the workshop are also enumerated.The workshop was supported by funding to RCSB PDB by the National Science Foundation (DBI 1338415); PDBe by the Wellcome Trust (104948); PDBj by JST-NBDC; BMRB by the National Institute of General Medical Sciences (GM109046); D3R by the National Institute of General Medical Sciences (GM111528); registration fees from industrial participants; and tax-deductible donations to the wwPDB Foundation by the Genentech Foundation and the Bristol-Myers Squibb Foundation.This is the final version of the article. It first appeared from Cell Press via https://doi.org//10.1016/j.str.2016.02.01

    Crystal Structure of the Dbl and Pleckstrin Homology Domains from the Human Son of Sevenless Protein

    Get PDF
    AbstractProteins containing Dbl homology (DH) domains activate Rho-family GTPases by functioning as specific guanine nucleotide exchange factors. All known DH domains have associated C-terminal pleckstrin homology (PH) domains that are implicated in targeting and regulatory functions. The crystal structure of a fragment of the human Son of sevenless protein containing the DH and PH domains has been determined at 2.3 Å resolution. The entirely α-helical DH domain is unrelated in architecture to other nucleotide exchange factors. The active site of the DH domain, identified on the basis of sequence conservation and structural features, lies near the interface between the DH and PH domains. The structure suggests that ligation of the PH domain will be coupled structurally to the GTPase binding site

    Mechanism of Action of the Cell-Division Inhibitor PC190723: Modulation of FtsZ Assembly Cooperativity

    No full text
    The cooperative assembly of FtsZ, the prokaryotic homologue of tubulin, plays an essential role in cell division. FtsZ is a potential drug target, as illustrated by the small-molecule cell-cycle inhibitor and antibacterial agent PC190723 that targets FtsZ. We demonstrate that PC190723 negatively modulates <i>Staphylococcus aureus</i> FtsZ polymerization cooperativity as reflected in polymerization at lower concentrations without a defined critical concentration. The crystal structure of the <i>S. aureus</i> FtsZ-PC190723 complex shows a domain movement that would stabilize the FtsZ protofilament over the monomeric state, with the conformational change mediated from the GTP-binding site to the C-terminal domain via helix 7. Together, the results reveal the molecular mechanism of FtsZ modulation by PC190723 and a conformational switch to the high-affinity state that enables polymer assembly
    corecore