90 research outputs found

    Identification of PKD1L1 Gene Variants in Children with the Biliary Atresia Splenic Malformation Syndrome

    Get PDF
    Biliary atresia (BA) is the most common cause of end‐stage liver disease in children and the primary indication for pediatric liver transplantation, yet underlying etiologies remain unknown. Approximately 10% of infants affected by BA exhibit various laterality defects (heterotaxy) including splenic abnormalities and complex cardiac malformations — a distinctive subgroup commonly referred to as the biliary atresia splenic malformation (BASM) syndrome. We hypothesized that genetic factors linking laterality features with the etiopathogenesis of BA in BASM patients could be identified through whole exome sequencing (WES) of an affected cohort. DNA specimens from 67 BASM subjects, including 58 patient‐parent trios, from the NIDDK‐supported Childhood Liver Disease Research Network (ChiLDReN) underwent WES. Candidate gene variants derived from a pre‐specified set of 2,016 genes associated with ciliary dysgenesis and/or dysfunction or cholestasis were prioritized according to pathogenicity, population frequency, and mode of inheritance. Five BASM subjects harbored rare and potentially deleterious bi‐allelic variants in polycystin 1‐like 1, PKD1L1, a gene associated with ciliary calcium signaling and embryonic laterality determination in fish, mice and humans. Heterozygous PKD1L1 variants were found in 3 additional subjects. Immunohistochemical analysis of liver from the one BASM subject available revealed decreased PKD1L1 expression in bile duct epithelium when compared to normal livers and livers affected by other non‐cholestatic diseases. Conclusion WES identified bi‐allelic and heterozygous PKD1L1 variants of interest in 8 BASM subjects from the ChiLDReN dataset. The dual roles for PKD1L1 in laterality determination and ciliary function suggest that PKD1L1 is a new, biologically plausible, cholangiocyte‐expressed candidate gene for the BASM syndrome

    Assessing the Validity of Adult-derived Prognostic Models for Primary Sclerosing Cholangitis Outcomes in Children

    Get PDF
    Background: Natural history models for primary sclerosing cholangitis (PSC) are derived from adult patient data, but have never been validated in children. It is unclear how accurate such models are for children with PSC. Methods: We utilized the pediatric PSC consortium database to assess the Revised Mayo Clinic, Amsterdam-Oxford, and Boberg models. We calculated the risk stratum and predicted survival for each patient within each model using patient data at PSC diagnosis, and compared it with observed survival. We evaluated model fit using the c-statistic. Results: Model fit was good at 1 year (c-statistics 0.93, 0.87, 0.82) and fair at 10 years (0.78, 0.75, 0.69) in the Mayo, Boberg, and Amsterdam-Oxford models, respectively. The Mayo model correctly classified most children as low risk, whereas the Amsterdam-Oxford model incorrectly classified most as high risk. All of the models underestimated survival of patients classified as high risk. Albumin, bilirubin, AST, and platelets were most associated with outcomes. Autoimmune hepatitis was more prevalent in higher risk groups, and over-weighting of AST in these patients accounted for the observed versus predicted survival discrepancy. Conclusions: All 3 models offered good short-term discrimination of outcomes but only fair long-term discrimination. None of the models account for the high prevalence of features of autoimmune hepatitis overlap in children and the associated elevated aminotransferases. A pediatric-specific model is needed. AST, bilirubin, albumin, and platelets will be important predictors, but must be weighted to account for the unique features of PSC in children.Peer reviewe

    Outcomes of Childhood Cholestasis in Alagille Syndrome: Results of a Multicenter Observational Study

    Get PDF
    Alagille syndrome (ALGS) is an autosomal dominant multisystem disorder with cholestasis as a defining clinical feature. We sought to characterize hepatic outcomes in a molecularly defined cohort of children with ALGS‐related cholestasis. Two hundred and ninety‐three participants with ALGS with native liver were enrolled. Participants entered the study at different ages and data were collected retrospectively prior to enrollment, and prospectively during the study course. Genetic analysis in 206 revealed JAGGED1 mutations in 91% and NOTCH2 mutations in 4%. Growth was impaired with mean height and weight z‐scores of <−1.0 at all ages. Regression analysis revealed that every 10 mg/dL increase in total bilirubin was associated with a decrease in height z‐score by 0.10 (P = 0.03) and weight z‐score by 0.15 (P = 0.007). Total bilirubin was higher for younger participants (P = 0.03) with a median of 6.9 mg/dL for those less than 1 year old compared with a median of 1.3 mg/dL for participants 13 years or older. The median gamma glutamyl transferase also dropped from 612 to 268 in the same age groups. After adjusting for age, there was substantial within‐individual variation of alanine aminotransferase. By 20 years of age, 40% of participants had developed definite portal hypertension. Estimated liver transplant–free survival at the age of 18.5 years was 24%. Conclusions: This is the largest multicenter natural history study of cholestasis in ALGS, demonstrating a previously underappreciated burden of liver disease with early profound cholestasis, a second wave of portal hypertension later in childhood, and less than 25% of patients reaching young adulthood with their native liver. These findings will promote optimization of ALGS management and development of clinically relevant endpoints for future therapeutic trials

    Genome-wide scan reveals association of psoriasis with IL-23 and NF-ÎșB pathways

    Get PDF
    Psoriasis is a common immune-mediated disorder that affects the skin, nails and joints. To identify psoriasis susceptibility loci, we genotyped 438,670 SNPs in 1,409 psoriasis cases and 1,436 controls of European ancestry. We followed up 21 promising SNPs in 5,048 psoriasis cases and 5,041 controls. Our results provide strong support for the association of at least seven genetic loci and psoriasis (each with combined P less than 5 × 10−8). Loci with confirmed association include HLA-C, three genes involved in IL-23 signaling (IL23A, IL23R, IL12B), two genes that act downstream of TNF-α and regulate NF-ÎșB signaling (TNIP1, TNFAIP3) and two genes involved in the modulation of Th2 immune responses (IL4, IL13). Although the proteins encoded in these loci are known to interact biologically, we found no evidence for epistasis between associated SNPs. Our results expand the catalog of genetic loci implicated in psoriasis susceptibility and suggest priority targets for study in other auto-immune disorders

    Meta-analysis of shared genetic architecture across ten pediatric autoimmune diseases

    Get PDF
    Genome-wide association studies (GWASs) have identified hundreds of susceptibility genes, including shared associations across clinically distinct autoimmune diseases. We performed an inverse χ(2) meta-analysis across ten pediatric-age-of-onset autoimmune diseases (pAIDs) in a case-control study including more than 6,035 cases and 10,718 shared population-based controls. We identified 27 genome-wide significant loci associated with one or more pAIDs, mapping to in silico-replicated autoimmune-associated genes (including IL2RA) and new candidate loci with established immunoregulatory functions such as ADGRL2, TENM3, ANKRD30A, ADCY7 and CD40LG. The pAID-associated single-nucleotide polymorphisms (SNPs) were functionally enriched for deoxyribonuclease (DNase)-hypersensitivity sites, expression quantitative trait loci (eQTLs), microRNA (miRNA)-binding sites and coding variants. We also identified biologically correlated, pAID-associated candidate gene sets on the basis of immune cell expression profiling and found evidence of genetic sharing. Network and protein-interaction analyses demonstrated converging roles for the signaling pathways of type 1, 2 and 17 helper T cells (TH1, TH2 and TH17), JAK-STAT, interferon and interleukin in multiple autoimmune diseases

    The structure of common genetic variation in United States populations

    No full text
    The common-variant/common-disease model predicts that most risk alleles underlying complex health-related traits are common and, therefore, old and found in multiple populations, rather than being rare or population specific. Accordingly, there is widespread interest in assessing the population structure of common alleles. However, such assessments have been confounded by analysis of data sets with bias toward ascertainment of common alleles (e.g., HapMap and Perlegen) or in which a relatively small number of genes and/or populations were sampled. The aim of this study was to examine the structure of common variation ascertained in major U.S. populations, by resequencing the exons and flanking regions of 3,873 genes in 154 chromosomes from European, Latino/Hispanic, Asian, and African Americans generated by the Genaissance Resequencing Project. The frequency distributions of private and common single-nucleotide polymorphisms (SNPs) were measured, and the extent to which common SNPs were shared across populations was analyzed using several different estimators of population structure. Most SNPs that were common in one population were present in multiple populations, but SNPs common in one population were frequently not common in other populations. Moreover, SNPs that were common in two or more populations often differed significantly in frequency from one population to another, particularly in comparisons of African Americans versus other U.S. populations. These findings indicate that, even if the bulk of alleles underlying complex health-related traits are common SNPs, geographic ancestry might well be an important predictor of whether a person carries a risk allele

    The Structure of Common Genetic Variation in United States Populations

    Get PDF
    The common-variant/common-disease model predicts that most risk alleles underlying complex health-related traits are common and, therefore, old and found in multiple populations, rather than being rare or population specific. Accordingly, there is widespread interest in assessing the population structure of common alleles. However, such assessments have been confounded by analysis of data sets with bias toward ascertainment of common alleles (e.g., HapMap and Perlegen) or in which a relatively small number of genes and/or populations were sampled. The aim of this study was to examine the structure of common variation ascertained in major U.S. populations, by resequencing the exons and flanking regions of 3,873 genes in 154 chromosomes from European, Latino/Hispanic, Asian, and African Americans generated by the Genaissance Resequencing Project. The frequency distributions of private and common single-nucleotide polymorphisms (SNPs) were measured, and the extent to which common SNPs were shared across populations was analyzed using several different estimators of population structure. Most SNPs that were common in one population were present in multiple populations, but SNPs common in one population were frequently not common in other populations. Moreover, SNPs that were common in two or more populations often differed significantly in frequency from one population to another, particularly in comparisons of African Americans versus other U.S. populations. These findings indicate that, even if the bulk of alleles underlying complex health-related traits are common SNPs, geographic ancestry might well be an important predictor of whether a person carries a risk allele

    H syndrome: 5 new cases from the United States with novel features and responses to therapy

    No full text
    Abstract Background H Syndrome is an autosomal recessive disorder characterized by cutaneous hyperpigmentation, hypertrichosis, and induration with numerous systemic manifestations. The syndrome is caused by mutations in SLC29A3, a gene located on chromosome 10q23, which encodes the human equilibrative transporter 3 (hENT3). Less than 100 patients with H syndrome have been described in the literature, with the majority being of Arab descent, and only a few from North America. Case presentation Here we report five pediatric patients from three medical centers in the United States who were identified to have H syndrome by whole exome sequencing. These five patients, all of whom presented to pediatric rheumatologists prior to diagnosis, include two of Northern European descent, bringing the total number of Caucasian patients described to three. The patients share many of the characteristics previously reported with H syndrome, including hyperpigmentation, hypertrichosis, short stature, insulin-dependent diabetes, arthritis and systemic inflammation, as well as some novel features, including selective IgG subclass deficiency and autoimmune hepatitis. They share genetic mutations previously described in patients of the same ethnic background, as well as a novel mutation. In two patients, treatment with prednisone improved inflammation, however both patients flared once prednisone was tapered. In one of these patients, treatment with tocilizumab alone resulted in marked improvement in systemic inflammation and growth. The other had partial response to prednisone, azathioprine, and TNF inhibition; thus, his anti-TNF biologic was recently switched to tocilizumab due to persistent polyarthritis. Another patient improved on Methotrexate, with further improvement after the addition of tocilizumab. Conclusion H syndrome is a rare autoinflammatory syndrome with pleiotropic manifestations that affect multiple organ systems and is often mistaken for other conditions. Rheumatologists should be aware of this syndrome and its association with arthritis. It should be considered in patients with short stature and systemic inflammation, particularly with cutaneous findings. Some patients respond to treatment with biologics alone or in combination with other immune suppressants; in particular, treatment of systemic inflammation with IL-6 blockade appears to be promising. Overall, better identification and understanding of the pathophysiology may help devise earlier diagnosis and better treatment strategies

    Loci on 20q13 and 21q22 are associated with pediatric-onset inflammatory bowel disease

    No full text
    Inflammatory bowel disease (IBD) is a common inflammatory disorder with complex etiology that involves both genetic and environmental triggers, including but not limited to defects in bacterial clearance, defective mucosal barrier and persistent dysregulation of the immune response to commensal intestinal bacteria. IBD is characterized by two distinct phenotypes: Crohn's disease (CD) and ulcerative colitis (UC). Previously reported GWA studies have identified genetic variation accounting for a small portion of the overall genetic susceptibility to CD and an even smaller contribution to UC pathogenesis. We hypothesized that stratification of IBD by age of onset might identify additional genes associated with IBD. To that end, we carried out a GWA analysis in a cohort of 1,011 individuals with pediatric-onset IBD and 4,250 matched controls. We identified and replicated significantly associated, previously unreported loci on chromosomes 20q13 (rs2315008[T] and rs4809330[A]; P = 6.30 × 10-8 and 6.95 × 10-8, respectively; odds ratio (OR) = 0.74 for both) and 21q22 (rs2836878[A]; P = 6.01 × 10-8; OR = 0.73), located close to the TNFRSF6B and PSMG1 genes, respectively. © 2008 Nature Publishing Group
    • 

    corecore