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Abstract 

Biliary atresia (BA) is the most common cause of end-stage liver disease in children and the 

primary indication for pediatric liver transplantation, yet underlying etiologies remain 

unknown. Approximately 10% of infants affected by BA exhibit various laterality defects 

(heterotaxy) including splenic abnormalities and complex cardiac malformations — a 

distinctive subgroup commonly referred to as the biliary atresia splenic malformation (BASM) 

syndrome. We hypothesized that genetic factors linking laterality features with the 

etiopathogenesis of BA in BASM patients could be identified through whole exome sequencing 

(WES) of an affected cohort. DNA specimens from 67 BASM subjects, including 58 patient-

parent trios, from the NIDDK-supported Childhood Liver Disease Research Network 

(ChiLDReN) underwent WES. Candidate gene variants derived from a pre-specified set of 2,016 
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genes associated with ciliary dysgenesis and/or dysfunction or cholestasis were prioritized 

according to pathogenicity, population frequency, and mode of inheritance. Five BASM subjects 

harbored rare and potentially deleterious bi-allelic variants in polycystin 1-like 1, PKD1L1, a 

gene associated with ciliary calcium signaling and embryonic laterality determination in fish, 

mice and humans. Heterozygous PKD1L1 variants were found in 3 additional subjects. 

Immunohistochemical analysis of liver from the one BASM subject available revealed decreased 

PKD1L1 expression in bile duct epithelium when compared to normal livers and livers affected 

by other non-cholestatic diseases. Conclusion: WES identified bi-allelic and heterozygous 

PKD1L1 variants of interest in 8 BASM subjects from the ChiLDReN dataset.  The dual roles for 

PKD1L1 in laterality determination and ciliary function suggest that PKD1L1 is a new, 

biologically plausible, cholangiocyte-expressed candidate gene for the BASM syndrome. 

 

Introduction 

Biliary atresia (BA) is a severe neonatal cholangiopathy characterized by progressive 

fibroinflammatory obliteration of both extra- and intra-hepatic bile ducts, generally leading to 

cholestasis, portal fibrosis, and, ultimately, biliary cirrhosis. Among children, BA is the most 

common cause of end-stage liver disease worldwide and the primary indication for liver 

transplantation, yet its etiology (or etiologies) remains unknown (1-4). Hypotheses regarding 

the pathogenesis of BA include perinatal viral infections or toxins targeting cholangiocytes, 

chronic inflammatory or autoimmune-mediated bile duct injury, and mutations in specific genes 

that regulate hepatobiliary development (1). In the biliary atresia splenic malformation (BASM) 

syndrome, which accounts for ~10% of infants affected with BA, the coexistence of one or more 

major congenital malformations within a wide spectrum of laterality defects (heterotaxy) along 

with abnormal biliary tract development suggests a role for genetic contributions to the etiology 

of the BASM syndrome (5-7). 
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A developmental cause of BA was first proposed in an early case collection (8) while support for 

a potential genetic contribution comes not only from pre- and perinatal evidence of biliary tract 

dysgenesis in BA (9), but also from several familial case reports of BA (10). However, given the 

general lack of heritability of BA within families and reports of twin discordance (11-13), recent 

studies have explored non-genetic etiologies underlying BA, including viral, toxin or immune-

mediated mechanisms (2, 14). Nevertheless, the genetic determinants of heterotaxy syndromes 

often involve mutations in genes essential for ciliary structure or function (15, 16), providing 

support to re-focus efforts exploring potential roles for variants in key ciliary genes in the 

pathogenesis of the BASM syndrome  (6, 7). 

 

A growing list of genes involved in bile duct development and function have been implicated in 

the pathogenesis of biliary tract diseases including BA, several of which cause structural and 

functional alterations in primary cilia (17, 18). Non-motile primary cilia are present in many cell 

types including the apical surface of biliary epithelium (19, 20). Acting as cellular antennae that 

sense a wide variety of molecules in the extracellular environment, primary cilia play an integral 

role in the regulation and transmission of downstream intracellular signaling pathways (15). 

Moreover, the establishment of normal L-R patterning in vertebrate embryogenesis is 

dependent on both sensory and motile ciliary functions (15, 16). Support for the potential 

contribution of ciliary dysfunction in BA comes from several sources: (1) cholangiocyte cilia in 

BA livers are significantly shorter, abnormal in their orientation, and less abundant compared 

with other cholestatic disorders and normal livers; (2) mutations in a small number of 

ciliopathy and laterality genes, including CFC1, NODAL, and ZIC3, have been suggested as a 

possible etiology for BA in some patients; and (3) several well-characterized mutations in 

ciliopathy genes lead to developmental biliary tract diseases known as cholangiociliopathies — 

Caroli syndrome, ductal plate malformations, congenital hepatic fibrosis and polycystic liver 

diseases (21-25). 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

Given the central role of cilia in critical developmental pathways of hepatobiliary biogenesis as 

well as L-R determination during embryogenesis leading to heterotaxy, we hypothesized that 

ciliary dysgenesis and/or dysfunction may be involved in the pathogenesis of the BASM 

syndrome. To explore this hypothesis, we performed whole exome sequencing (WES) in 

carefully phenotyped BASM subjects enrolled in a large multicenter longitudinal North 

American study of pediatric cholestatic liver diseases, focusing our analysis on a subset of 2,016 

genes related primarily to ciliary structure and function. 

 

Materials and Methods 

Subject Selection. 

Participants enrolled between May 2004 – August 2016 in either of two prospective 

observational cohort studies (A Prospective Database of Infants with Cholestasis [PROBE; 

NCT00061828] or Biliary Atresia Study in Infants and Children [BASIC; NCT00345553]) within 

the NIDDK-supported Childhood Liver Disease Research Network (ChiLDReN, 

http://childrennetwork.org) were eligible for inclusion. At the time of selection, 2,001 BA 

participants, of which 1,488 had DNA available for genetic analyses, including 618 complete 

child-parent trios, were enrolled in ChiLDReN consortia across 18 clinical sites in the United 

States and Canada. The diagnosis of BA in each participant was confirmed by review of 

pertinent diagnostic liver biopsy, radiologic and surgical reports. BA participants for whom DNA 

was available in the ChiLDReN biorepository, and with at least one reported laterality defect 

(i.e., splenic abnormalities, intestinal malrotation, abdominal heterotaxy, vascular 

abnormalities, or congenital heart disease), as defined by the National Birth Defects Prevention 

Study, or cystic renal dysplasia, were included (26, 27). Sixty-seven BASM participants (58 

child-parent trios and 9 duos [child and one parent]) underwent WES. Of note, the clinical 

phenotype of participants’ parents and siblings are not collected in PROBE or BASIC, thus 
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obviating knowledge of familial cardiac, hepatic or laterality abnormalities. 

 

WES and Data Analyses. 

DNA from each trio was sequenced using standard Illumina protocols and NimbleGen SeqCap 

technology at two sites, The Human Genome Sequencing Center at the Baylor College of 

Medicine (Houston, TX) and the Northwest Genomics Center (Seattle, WA), with a mean 

coverage depth of 50-60X in the targeted region. The raw sequence reads were assembled 

relative to the Genome Reference Consortium Human GRCh38 (hg38) using the PEMapper 

software tool and PECaller was used to identify single nucleotide variants (SNVs), insertions and 

deletions (INDELs) (28). These unique variants were functionally annotated using Bystro 

(https://bystro.io/) and ANNOVAR which report the variant’s type, functional classification 

(nonsense, replacement, silent, 5’ or 3’ UTR, splice junction or other intronic, intergenic), 

presence in the Single Nucleotide Polymorphism Database (dbSNP), and measures of 

evolutionary conservation (29, 30). 

 

To explore the potential contribution of ciliary dysgenesis and/or dysfunction underlying the 

BASM phenotype, we used a pre-specified list of 2,016 Genes of Interest (GOI; Table S1) derived 

principally from 2 large comprehensive data sets dedicated to ciliomic studies as well as the 

Emory Genetics Laboratory (EGL) Ciliopathies Sequencing Panel, the EGL Neonatal and Adult 

Cholestasis Sequencing Panel, and a collated list of putative BA candidate susceptibility genes 

reported in the literature (18, 23, 27, 31) (Figure 1). 
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Variants in genes included among the 2,016 GOI were then subjected to further duo and trio 

analyses using a custom gene prioritization algorithm (Figure S1). In addition to standard 

quality controls, our candidate gene prioritization method included analysis of variants in 

coding regions of a gene (i.e. exonic and splicing donor/acceptor sites) weighted towards 

identification of protein-truncating variants (stop gain/loss, start loss, or frameshift), missense 

variants, canonical splice-site variants, and in-frame INDELs. Furthermore, we prioritized 

variants in individuals by preferentially selecting rare variants with a minor allele frequency 

(MAF) <1% and those with a Combined Annotation Dependent Depletion (CADD) score >10, 

indicating that the variant is amongst the top 10% of deleterious variants in the human genome, 

or predicted to negatively impact protein function using the in silico Sorting Intolerant From 

Tolerant (SIFT) algorithm (32, 33). Bi-allelic assignation included variants with CADD scores 

<10, when an allele with a CADD score >10 was initially identified by application of the 

screening algorithm. Finally, participants’ and their parents’ variants were systematically 

categorized based on four different modes of inheritance: (1) germ-line de novo mutations; (2) 

recessive homozygous genotypes, which were heterozygous in both parents; (3) compound 

heterozygous; and (4) hemizygous X chromosome variants. 

 

Liver Histology and Immunohistochemistry. 

Standard hematoxylin and eosin staining was employed in formalin-fixed paraffin-embedded 

liver tissue.  Immunohistochemical (IHC) staining was performed on a Bond Rx automated 

staining system (Leica Biosystems) utilizing the Bond Refine polymer staining kit (Leica 

Biosystems).  Primary anti-human PKD1L1 antibody incubation (Atlas HPA022424, 1:200 

dilution) or anti-human K7 (Dako M7018, 1:100 dilution) proceeded for 1 hour at room 

temperature, and antigen retrieval was performed with E1 (PKD1L1) and E2 (CK7) (Leica 

Biosystems) retrieval solution for 20min.  Slides were rinsed and dehydrated through a series of 

ascending concentrations of ethanol and xylene, prior to the placement of coverslips.  
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Results 

Participant Demographics and Clinical Information. 

Sixty-seven BASM ChiLDReN participants were included in the current study. There was a slight 

female predominance with racially and ethnically diverse backgrounds generally reflective of 

the overall demographics of the ChiLDReN cohort of BA participants (Table 1). The Kasai 

hepatoportoenterostomy was performed in 61 participants at an average age of 59 days (range: 

21 – 122 days) and 61% of participants had undergone liver transplantation at the time of 

selection (See Table 1 and Figure S2 for detailed outcomes). At the time of selection, 27% of 

participants were alive with native liver, similar to previously published series (4,5). Review of 

PROBE and BASIC case report forms indicated that the majority of BASM participants in this 

study exhibited at least two laterality features (Figure 2A). The most common abnormalities of 

L-R patterning were splenic abnormalities (primarily polysplenia and less frequently asplenia) 

and intestinal malrotation, each present in more than half of the participants. Other common 

anomalies were congenital heart disease, abdominal heterotaxy, various vascular 

malformations, and renal anomalies (Figure 2B). The range and distribution of anomalies in this 

cohort were comparable to previously published collections of BASM patients (6, 7, 26). 

 

WES and Systematic Analyses of Ciliopathy Genes. 

Applying quality control filters to the collated list of 2016 ciliopathy and cholestatic GOIs (Table 

S1), led to the identification of 226,058 variants in 67 BASM probands. After utilizing our 

candidate gene prioritization method, 12,190 variants remained and served as the basis for 

detailed stratifications and inter-subject analyses (Figure S1). No pathogenic variants were 

identified in genes underlying the cholangiociliopathies (e.g., PKHD1, PKD2), neonatal sclerosing 

cholangitis (DCDC2), or neonatal cholestasis (e.g., ABCB11, ABCB4, CFTR, JAG1), suggesting 

exclusion of non-BA cholestatic diagnoses and adequacy of clinical phenotyping. Furthermore, 
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no significant pathogenic variants in previously proposed BA candidate genes CFC1, FOXA2, 

INVS, NODAL, and ZIC3 were identified (see Discussion). However, prioritizing bi-allelic variants 

led to the identification of several new and promising candidate genes, not previously linked to 

BA or the BASM subgroup. In particular, PKD1L1, which encodes the polycystin 1-like 1 protein 

(a member of the polycystin protein family), had potentially pathogenic bi-allelic and 

heterozygous variants in multiple BASM participants. Given the role of PKD1L1 in ciliary 

calcium signaling and laterality determination, its interactions with PKD2, and as a cause of 

complex congenital heart disease in children, further investigations of PKD1L1 variants in this 

BASM cohort were pursued (34-37). 

 

PKD1L1 Gene Variants and Clinical Features of Heterotaxy. 

A total of 910 PKD1L1 variants were found in the 67 BASM participants (Table S2). Employing 

our candidate gene prioritization algorithm led to the identification of bi-allelic PKD1L1 variants 

in 5 participants (Subjects 1, 2, 3, 4, and 5), and heterozygous variants of interest in 3 additional 

participants (Subjects 6, 7, and 8; Tables 2 and S2). Figure 3 schematically depicts the exonic 

location of the 9 PKD1L1 variants in this report. MAFs for these 9 variants ranged from 0.0004% 

- 0.6072%. Of the 9 PKD1L1 variants (6 missense, 2 splice-site, and 1 chain-terminating), 8 have 

yet to be associated with a disease phenotype. The splice site mutation found in Subject 3 

(c.6473+2_6473+3delTG) was recently reported as a homozygous variant in 2 siblings with 

heterotaxy and severe congenital heart disease (35). The variants c.T2399C (p.I800T) and 

c.C6949T (p.R2317W) were both present in homozygous form in Subject 1, and present as 

heterozygous alleles in Subjects 2, 6, and 7 (Tables 2 and S2). Subject 2 was compound 

heterozygous for p.I800T and c.T7121C (p.I2374T). Subjects 3 and 4 had an allelic variant 

occurring near a splice junction on one allele, and a missense variant on the other allele. Subject 

5 was compound heterozygous for a protein-truncating variant c.C7937G (p.S2646X) and a 

missense variant c.G8266A (p.D2756N). The variant p.R2317W was found in heterozygous form 
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in 2 additional participants (Subjects 6 and 7); a second potentially pathogenic allelic variant 

was not readily identifiable in either individual (Table S2). Taken together, 5 participants in this 

study possessed rare and potentially pathogenic bi-allelic variants in a new candidate gene for 

BASM — PKD1L1. 

 

The protein domains of PKD1L1 have not been mapped in fine detail, but exhibit similarities to 

portions of existing members of the greater PKD gene family (34, 36-38). The PKD1L1 protein is 

predicted to be 2,849 amino acids in length, with a large external N-terminal domain comprising 

approximately half the length of the protein (with PKD and REJ regions), followed by 11 

transmembrane domains and ending in a short coiled-coil region at the C-terminus. Four of the 

5 participants (Subjects 1, 2, 4, and 5) had at least 1 PKD1L1 coding variant in, or near, the 

proposed C-terminal coiled-coil region, necessary for interactions with PKD2 (36, 37). Three 

participants (Subjects 1, 2, and 3) had PKD1L1 variants in the large external N-terminal REJ 

region. Thus, in addition to the 2 splice site variants, there were 6 potentially deleterious 

PKD1L1 missense variants and 1 chain-terminating variant in 5 BASM subjects.  

 

Polysplenia, intestinal malrotation, abdominal heterotaxy, and vascular anomalies were each 

present in 4 of the 5 individuals with bi-allelic PKD1L1 variants (Table 2). 

Polysplenia, abdominal heterotaxy, and vascular anomalies were jointly present in 3 individuals 

(Subjects 1, 2, and 5) while the concurrence of polysplenia, intestinal malrotation, and vascular 

anomalies was also reported in 3 individuals (Subjects 2, 3, and 5). Congenital heart 

disease/heterotaxy was reported in 2 subjects (Subject 1 – dextrocardia; Subject 5 – 

atrioventricular discordance, left atrial isomerism, left ventricular outflow obstruction, 

peripheral pulmonary and mitral valve stenosis). Although the clinical manifestations of 

heterotaxy in these 5 BASM participants overlapped, there were no clear genotype-phenotype-
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outcome correlations between individual laterality or hepatic features and specific PKD1L1 

variants. Three of the 5 individuals (60%) with potentially pathogenic bi-allelic PKD1L1 variants 

underwent liver transplantation – Subjects 2, 3, and 5 at ages 10, 0.5 and 5 years, respectively. 

Subjects 1 and 4 are surviving with their native livers at ages 7 and 13 years, respectively. 

Comparatively, 65% of individuals without notable PKD1L1 variants from this cohort 

underwent liver transplantation at an average age of 26 months (range: 3 – 136 months). The 

limited sample size of this study precludes exploration of connections between PKD1L1 variants 

and timing of liver transplantation. 

 

PKD1L1 Expression in Human Bile Duct Epithelium. 

Protein function and gene expression data for human PKD1L1 are limited. In liver tissue 

obtained from a normal 3-day-old infant and 2 patients affected by other non-cholestatic liver 

diseases (carbamoyl phosphate synthetase deficiency and hepatoblastoma), PKD1L1 is strongly 

expressed in cholangiocytes (Figure 4 B-C, G), while expression is absent in liver tissue from a 

patient with Alagille syndrome with paucity of interlobular bile ducts (Figure 4 D). Liver tissue 

from one BASM subject with bi-allelic PKD1L1 variants was available from the ChiLDReN 

biorepository for immunohistochemical analysis – Subject 1. Notably, the biliary ductal plate 

profiles in this subject at the time of Kasai portoenterostomy revealed weak or absent 

expression of PKD1L1 (Figure 4A). Taken together, this is the first demonstration of PKD1L1 in 

human liver tissue with expression limited exclusively to bile duct epithelium. 
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Discussion 

To date, a firmly established etiology of BA remains elusive. Rather, multiple factors have been 

implicated in the perinatal biliary injury characteristic of BA that results in progressive intra-

and extra-hepatic cholangiopathy evident soon after birth (1, 39). Until this study, a large cohort 

of BASM patients has not undergone extensive investigation utilizing next-generation 

sequencing, a technology that has identified disease-causing variants across a diverse spectrum 

of pediatric and adult diseases in various fields (40). The application of WES to this cohort of 67 

BASM participants, with a focused exploration of variants within a pre-specified list of 2,016 

genes associated with ciliopathies, hepatobiliary development, and cholestasis, led to the 

identification of PKD1L1 as a new candidate gene for BASM (Figure 3, Tables 2 and S2). 

Pathogenic variants in several previously-proposed BASM candidate genes, (i.e., CFC1, FOXA2, 

INVS, NODAL, and ZIC3) were not observed (Table S3) (41). In primary cilia, PKD1L1 

heterodimerizes with PKD2L1 to form a transmembrane ciliary calcium channel that ultimately 

influences downstream Hedgehog signaling (36, 37, 42). Moreover, PKD1L1-PKD2 

heterodimers are required during embryonic development to establish normal L-R patterning, 

and leads to heterotaxy when this pairing is disrupted (36, 37). These molecular interactions 

have yet to be explored in cholangiocytes which express PKD1L1 (Figure 4), a crucial step which 

will help establish the normal functioning of PKD1L1 in bile duct epithelium and the 

consequences of potentially pathogenic variations in the PKD1L1 gene. 

 

Support for PKD1L1 as a plausible candidate gene for BASM includes recently discovered roles 

for PKD1L1 variants in humans with heterotaxy and mouse models of laterality (35, 36, 43). 

Vetrini et al. reported the first series of patients with mutations in PKD1L1 who presented with 

heterotaxy and severe congenital heart disease (35). Notably, the homozygous PKD1L1 splice-

site mutation, c.6473+2_6473+3delTG, from that report was present in one allele of Subject 3 
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(Table 2).  This BASM participant had polysplenia and intestinal malrotation without reported 

abdominal heterotaxy or congenital heart disease. It is not known if any of the 3 individuals 

from 2 families presented by Vetrini et al. had splenic or biliary tract abnormalities.  

 

In both mice and Medaka fish, several Pkd1l1 point mutants exhibit disruption of L-R patterning 

during embryologic development (36-38). However, as in the human report, the presence of any 

biliary tract abnormalities in these animal models is unknown, perhaps due to the low survival 

rates of progeny with heterotaxy due to dysfunctional Pkd1l1 mutations. Intriguingly, only ~35-

45% of mice with homozygous Pkd1l1 mutations exhibited heterotaxy, attesting to the variable 

consequences and penetrance of PKD1L1 variants on subsequent L-R patterning defects, even in 

well-defined mouse and zebrafish genetic backgrounds. The incomplete penetrance observed in 

human and animal models of heterotaxy is likely the result of fundamental aspects of 

randomization inherent in L-R determination during embryogenesis (44). Extending this 

observation to the BASM syndrome, it is possible that the lack of apparent Mendelian 

inheritance of BASM within families could be due to reduced penetrance and/or variable 

expressivity of each specific gene variant during embryologic development. In addition, there 

may be undiagnosed or clinically-insignificant features of heterotaxy in family members, 

knowledge of which is currently unavailable within this dataset. 

 

In the BASM subgroup, which accounts for ~10% of infants affected with BA, the coexistence of 

major congenital anomalies and a wide array of laterality defects along with biliary tract 

dysmorphogenesis suggests underlying genetic abnormalities linking the altered embryologic 

development of these structures (45). First classified as BASM by Davenport et al. in 1993 (5), 

various aspects of heterotaxy have been associated with individual cases of BA as early as 1892 

(8) and 1941 (46) as well as in more recent case series (6, 7, 26). The diverse assortment of 

thoracic and abdominal anomalies of L-R asymmetry observed in patients with the BASM 
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syndrome overlaps phenotypically with an emerging class of genetic disorders broadly 

categorized as ciliopathies; however, support for inclusion of BASM as a ciliopathy has, to date, 

been limited (16, 25). With functional validation and identification of additional ciliopathy genes 

like PKD1L1, BA, and BASM specifically, may ultimately be classified as a cholangiociliopathy 

(25). 

 

In addition to PKD1L1 gene variants as a potential contributor to the BASM syndrome, it is 

possible that reduced or temporally-modified PKD1L1 RNA expression could play a role. Tsai et 

al. reported a heterozygous deletion of FOXA2 in a child with BA, intestinal malrotation, and an 

interrupted inferior vena cava whose father had situs inversus and polysplenia, but not BA (41). 

The potential link between FOXA2 and PKD1L1 gene expression stems from activation of Pkd1l1 

transcription by Foxa2 in mice (47). We did not identify candidate deleterious FOXA2 gene 

variants in our cohort of 67 BASM participants (Table S3). 

 

Whether PKD1L1 variants reported in this study are relevant to the BASM syndrome awaits 

detailed functional and developmental analyses. Molecular functional validations of PKD1L1 

mutations as a cause of cholangiopathy are needed and will likely require multi-faceted 

molecular and cellular approaches to investigate and assign normal, and variant, gene and 

domain functions. We have shown that PKD1L1 is expressed in normal human bile duct 

epithelium with reduced expression in Subject 1 (Figure 4). From a histological perspective, it is 

unknown to what degree PKD1L1 is expressed in patients with isolated BA, BASM patients with 

and without PKD1L1 gene variants, and other human cholangiopathies, especially since ciliary 

structures are often blunted in BA bile duct epithelium(22).  Moreover, studies of PKD1L1’s 

function will require consideration and incorporation of known heterodimer partners PKD2L1 

and PKD2, underscoring the complexities likely to follow detailed explorations of its role in 

primary ciliary function in cholangiocytes. 
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In conclusion, a WES-based exploration of variants in a robust ciliopathy gene collection led to 

the identification of rare and potentially deleterious bi-allelic variants in the PKD1L1 gene in 5 

of 67 BASM participants from the ChiLDReN database. We believe that PKD1L1, whose gene 

product is functionally relevant in primary ciliary calcium signaling, and whose loss-of-function 

results in heterotaxy in humans and various animal models, emerges as an etiologic candidate 

gene for BASM, and possibly select cases of BA without splenic malformation. The concept that 

disordered cholangiocyte ciliary structure and function produces the BASM syndrome seems 

biologically plausible, particularly given the established role of cilia in sensing and modulating 

biliary flow and composition, transmission of intracellular signals, and contribution to 

cholangiopathies (19, 20, 48). Future studies of PKD1L1 in heterotaxy and BA patients and their 

families, as well as laboratory-based validations in specific cell and animal-based models, will be 

needed to determine specific mechanistic roles for PKD1L1 in biliary tract development, 

cholangiocyte structure and ciliary signaling. 

 

Figure Legends 

Figure 1. Construction of the set of 2,016 genes of interest (GOI). To explore the potential 

contribution of ciliary and ciliopathy gene variants underlying the BASM phenotype, a collated 

set of ciliopathy and biliary GOI was derived from 4 large comprehensive data sets: (1) Cildb – a 

knowledgebase for centrosomes and cilia (27, 49); (2) Simon Fraser University (SFU) Ciliome 

Database – a summary of ciliomic studies (31); (3) MCIL1 – Emory Genetics Laboratory 

Ciliopathies Sequencing Panel; and (4) MM340 – Emory Genetics Laboratory Neonatal and Adult 

Cholestasis Sequencing Panel. 

 

Figure 2. A.) The number of reported laterality features per participant. Representation of 

the number of laterality features (1-6) per participant expressed as a percentage of the total 

cohort (n in parentheses). Note that the majority of participants (48) had two or more laterality 
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defects. Four of the 67 participants had isolated renal anomalies. B.) The 6 categorical types of 

reported laterality features. The most common reported abnormalities of left-right patterning 

in the 67 BASM participants expressed as a percentage of the total cohort (n in parentheses). 

The majority had splenic abnormalities or intestinal malrotation, with substantial overlap in the 

types of anomalies between participants. Abbreviation: IVC, inferior vena cava. 

 

Figure 3. Schematic depiction of the PKD1L1 variants in this report. Exonic regions affected 

by each variant are noted among the 58 PKD1L1 exons. Adapted from (50). 

 

Figure 4.  PKD1L1 expression in bile duct epithelium. Immunohistochemical detection of 

PKD1L1 in human liver tissue from: A) Subject 1; and representative regions from patients with 

B) carbamoyl phosphate synthetase deficiency; C) hepatoblastoma; and D) Alagille syndrome 

(with absence of portal tract bile ducts). E-G are from serial sections of liver tissue from a 

normal 3-day-old infant: E) hematoxylin and eosin staining; immunostaining with F) keratin 7 

and G) PKD1L1. Bile duct profiles are highlighted and enlarged in E-G. Note robust PKD1L1 

expression in cholangiocytes from two livers affected by hepatocellular disease and normal 

pediatric liver tissue (B, C, G), absence in Alagille syndrome (D), and weak/absent expression in 

Subject 1(A).  
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Table 1. Socio-demographic and clinical characteristics of the 67 

BASM participants. 

 

Category n (%) 

ChiLDReN Study 

     BASIC 

     PROBE 

 

43 (64) 

24 (36) 

Sex 

     Female 

     Male 

 

37 (55) 

30 (45) 

Race/Ethnicity 

     White 

          Hispanic 

     Asian 

     Black 

     Multiracial 

 

43 (64) 

10 (15) 

6 (9) 

4 (6) 

4 (6) 

Kasai HPE 

     Yes 

           Mean: 59 days 

           Range: 21-122 days  

     No 

 

61 (91) 

 

 

6 (9) 

Status 

     Liver Transplantation* 

     SNL 

     Unknown 

     Died* 

 

41 (61) 

18 (27) 

6 (9) 

3 (4) 

 

*Note: One subject died after transplant. 

 

Abbreviations: BASIC, Biliary Atresia Study in Infants and Children; BASM, biliary atresia 

splenic malformation; ChiLDReN, Childhood Liver Disease Research Network; HPE, 

hepatoportoenterostomy; PROBE, A Prospective Database of Infants with Cholestasis; SNL, 

survival with native liver. See Supplemental Figure S2 for a more detailed delineation of 

status at enrollment. 
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Table 2. Clinical and sequence features of the five BASM participants with bi-allelic PKD1L1 gene 

variants. 

 

Subject Polysplenia 
Intestinal 
Malrotation 

Abdominal 
Heterotaxy 

Congenital 
Heart 
Disease 

Vascular 
Anomaly 

PKD1L1 
Variant 

Variant 
Type 

HGVS Nomenclature RefSNP CADD MAF Notes 

1 X - X X X 

 
Arg2317Trp 
 
Ile800Thr 
 

 
Hom 
 
Hom 
 

 
c.6949C>T 
 
c.2399T>C 
 

 
rs139293796 
 
rs148011149 
 

 
31 
 
23 
 

 
0.1856% 
 
0.0211% 
 

Probable 
consanguinity 

2 X X X - X 

 
Ile800Thr 
 
Ile2374Thr 
 

 
Het (P) 
 
Het (M) 
 

 
c.2399T>C 
 
c.7121T>C 
 

 
rs148011149 
 
rs776420484 
 

 
23 
 
8 
 

 
0.0211% 
 
0.0012% 
 

- 

3 X X - - X 

 
Arg874Trp 
 
Splice Site* 
 

 
Het (P) 
 
Het (M) 
 

 
c.2620C>T 
 
c.6473+2_6473+3delTG 
 

 
rs139858574 
 
rs528302390 
 

 
33 
 
23 
 

 
0.0154% 
 
0.0365% 
 

* Previously 
reported 
pathogenic 
mutation 

 
4 
 

- X X - - 

 
Splice Site 
 
Ser2473Phe 
 

 
Het (P) 
 
Het (M) 
 

 
c.2675+4C>T 
 
c.7418C>T 
 

 
rs143005953 
 
rs140456142 
 

 
4 
 
23 
 

 
0.6072% 
 
0.1027% 
 

 
- 

 
5 
 

X X X X X 

 
Asp2756Asn 
 
Ser2646Ter 
 

 
Het (#) 
 
Het (M) 
 

 
c.8266G>A 
 
c.7937C>G 
 

 
rs770832954 
 
rs752673990 
 

24 
 
36 

0.0004% 
 
0.0004% 

# Presumed 
paternal 
inheritance (duo) 
or de novo 

 

Abbreviations: BASM, biliary atresia splenic malformation; CADD, Combined Annotation Dependent Depletion; Het, heterozygous; HGVS, 

Human Genome Variation Society; Hom, homozygous; MAF, minor allele frequency (from gnomAD); M, maternal; P, paternal. 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

 

  



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

 

  



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

 

  



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

 




