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Autoimmune diseases affect 7–10% of individuals living in  
the Western Hemisphere1 and represent a significant cause of  
chronic morbidity and disability. High rates of familial clustering 
and comorbidity across autoimmune diseases suggest that genetic 
predisposition underlies disease susceptibility. GWASs and immune-
focused fine-mapping studies of autoimmune thyroiditis (THY)2,  
psoriasis (PSOR)3, juvenile idiopathic arthritis (JIA)4, primary biliary 
cirrhosis (PBC)5, primary sclerosing cholangitis (PSC)6, rheumatoid 
arthritis (RA)7, celiac disease (CEL)8, inflammatory bowel disease 
(IBD, which includes Crohn’s disease (CD) and ulcerative colitis 
(UC)9), and multiple sclerosis (MS)10,11 have identified hundreds 
of autoimmune disease–associated SNPs across the genome12–14. 
SNP associations in certain pan-autoimmune loci, such as PTPN22 
c.1858C>T (rs2476601), are evident in independent GWASs across 
multiple autoimmune diseases15–18, whereas others have been 
uncovered through large-scale meta-analyses (for example, CEL-RA 

and type 1 diabetes (T1D)-CD) or by searches for known loci from 
one disease in another (for example, systemic lupus erythematosus 
(SLE))19. These studies demonstrate that more than half of genome-
wide significant (GWS) autoimmune disease associations are shared 
by at least two distinct autoimmune diseases20,21. However, the degree 
to which common, shared genetic variations may similarly affect the 
risk of different pAIDs and whether these effects are heterogeneous 
have not been systematically examined at the genotype level across 
multiple diseases simultaneously.

RESULTS
Shared genetic risk associations across ten pediatric 
autoimmune diseases
We performed whole-genome imputation on a combined cohort  
of more than 6,035 pediatric subjects across 10 clinically distinct 
pAIDs (Supplementary Table 1).

m
 and 10,718 population-based control Q3Q3
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m

Genome-wide association studies (GWASs) have identified hundreds of susceptibility genes, including shared associations  
across clinically distinct disease groups and autoimmune diseases. We performed an inverse 2 meta-analysis across ten 
pediatric-age-of-onset autoimmune diseases (pAIDs) in a case-control study including more than 6,035 cases and 10,718 shared 
population-based controls. We identified 27 genome-wide significant loci associated with one or more pAIDs, mapping to  
in silico–replicated autoimmune-associated genes (including IL2RA) and new candidate loci with established immunoregulatory 
functions such as ADGRL2, TENM3, ANKRD30A, ADCY7 and CD40LG.

.

m
 The pAID-associated single-nucleotide polymorphisms 

(SNPs) were functionally enriched for deoxyribonuclease (DNase)-hypersensitivity sites, expression quantitative trait loci (eQTL), 
microRNA (miRNA)-binding sites and coding variants. We also identified biologically correlated, pAID-associated candidate gene 
sets on the basis of immune cell expression profiling and found evidence of genetic sharing. Network and protein-interaction 
analyses demonstrated converging roles for type 1, 2 and 17 helper T cell (TH1, TH2 and TH17), JAK-STAT, interferon and 
interleukin signaling pathways in multiple autoimmune diseases.
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subjects without prior history of autoimmune or immune-mediated 
disorders. We performed whole-chromosome phasing and used the 
1,000 Genomes Project Phase I Integrated cosmopolitan reference 
panel (1KGP-RP) for imputation as previously described (SHAPEIT 
and IMPUTE2)22,23. Only individuals of self-reported European ances-
try and confirmed by principal-component analysis (Supplementary 
Fig. 1).

m
 were included (Online Methods). Rare (minor allele frequency 

(MAF) < 1%) and poorly imputed (INFO score < 0.8) SNPs were 
removed, leaving a total of 7,347,414 variants.

Whole-genome case-control association testing was done using 
case samples from each of the ten pAIDs and the shared controls, 
and additive logistic regression was applied with SNPTESTv2.5  
(ref. 24). There was no evidence of genomic inflation. To identify 
shared pAID-association loci, we performed an inverse 2 meta-
analysis, accounting for sample-size variation and the use of a shared 
control across the ten pAIDs25. We identified 27 linkage disequi-
librium (LD)-independent loci, consisting of associated SNPs with  
r2 > 0.05 within a 1-Mb window where at least one lead SNP reached 
a conventionally defined GWS threshold (P < 5 × 10−8; Fig. 1c  
and Supplementary Fig. 1b). An additional 19 loci reached a  
genome-wide marginally significant (GWM) threshold at or  
below PMETA < 1 × 10−6, of which 12 mapped to previously reported 
autoimmune loci and 7 mapped to putatively novel autoimmune loci 
(Fig. 1 and Supplementary Table 2a).

We identified five putatively novel GWS loci: CD40LG  
(PMETA < 8.38 × 10−11), ADGRL2 (PMETA < 8.38 × 10−11), TENM3 
(PMETA < 8.38 × 10−11), ANKRD30A (PMETA < 8.38 × 10−11) and 
ADCY7 (PMETA < 5.99 × 10−9). For each lead association locus,  
we identified the corresponding combination of pAIDs contributing 
to the association signal by enumerating all 1,023 unique disease 
combinations (for example, one disease, T1D; two diseases, T1D 
and SLE; or four diseases, UC, CD, CEL and SLE) and performing 
association testing to identify the disease combination that yielded 
the maximum logistic regression Z-score (Online Methods)26. With 
the exception of ANKRD30A, the loci were jointly associated with at 
least two or more pAIDs; for example, CD40LG was shared by CEL, 
CD and UC (Fig. 1 and Table 1). Among the 27 GWS lead SNPs,  
22 had been reported previously as GWS for at least one of the asso-
ciated pAIDs (specifically, for the corresponding adult phenotypes) 
identified by our analysis (Supplementary Table 1b )12,27..

m
 The most 

widely shared locus, chr4q27:rs62324212, mapping to an intronic 
SNP in IL21-AS1 and residing just upstream of IL21, was shared 
across all ten diseases, and three of these associations were novel 
(THY, ankylosing spondylitis (AS) and common variable immu-
nodeficiency (CVID)). Among the previously known GWS loci in 
adult-onset or generalized autoimmune disease, we identified at least 
one previously unrecognized pAID association for more than 50% of 
them (Supplementary Table 2c,d)..

m

Q4Q4
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Q6Q6

A number of the pAIDs were significantly associated with disease-
specific signals mapping to or near the locus encoding HLA-DRB1. 
However, even the two most significant LD-independent variants, 
associated with T1D and JIA, respectively, were disease specific 
(Supplementary Fig. 3),.

m
 which suggests that the variants associated 

with a given disease are distinct. Although some of these associated 
signals were shared by at least one other autoimmune disease, in no 
instance was a single signal associated with any of the diseases shared 
across all other diseases, which further underscores the complexity of 
signal sharing across the major histocompatibility complex (MHC) 
(Supplementary Fig. 3b).

Disease-specific and cross-autoimmune replication support for 
pAID-associated loci
We performed in silico analysis to test whether the reported associa-
tions could be replicated in an independent data set. We observed 
nominally significant replication support for four of the five putatively 
novel GWS loci, including three instances of disease-specific replica-
tion (Supplementary Table 1d). Among the replicated loci, chrXq26.3 
(rs2807264), mapping within 70 Kb upstream of CD40LG, was notable, 
as we observed disease-specific replication in both UC (P < 4.66 × 10−5)  
and CD (P < 5.81 × 10−4), as well as cross-autoimmune replication in 
AS (P < 9.54 × 10−3). Although rs2807264 was not identified in our 
analysis as associated with pediatric AS, it is well documented that 
adult-onset AS and pediatric AS may be biologically different dis-
eases with independent genetic etiologies28,29. A third disease-specific 
replication (P < 5.99 × 10−6) was identified in CD for the chr16q12.1 
(rs77150043) signal mapping to an intronic position in ADCY7. This 
third instance and the replication of the CD40LG locus in UC were 
both significant, even after a very conservative Bonferonni adjust-
ment for 156 tests (P < 3.21 × 10−4). A nominally significant pan-
autoimmune replication signal (P < 1.69 × 10−2) was also observed at 
chr1p31.1 (rs2066363) near LPHN2 in UC, and a replication signal  
(P < 3.65 × 10−3) was also observed at the chr4q35.1 locus (rs77150043) 
in psoriasis (Supplementary Tables 1d and 2e).

Sharing of pAID-associated SNPs and bidirectional effects of 
some SNPs on disease-specific risk
Of the 27 GWS loci, 81% (22) showed evidence of being shared among 
multiple pAIDs. These mapped to 77 different SNP-pAID combina-
tions, 44 of which had been previously reported at or near genome-wide 
significance (P < 1 × 10−6), whereas 33 represented potentially novel 
disease-association signals (Table 1 and Supplementary Table 1).  
Although PTPN22 c.1858C>T (rs2476601) increases the risk for T1D, 
the variant is protective against CD17,30–32. We identified eight other 
instances (P < 0.05) where the risk allele shared by the model pAID 
combination was associated with protection against another pAID 
(Fig. 2a .

m
and Supplementary Fig. 7)..

m

Q7Q7

Q8Q8 Q27Q27

Figure 1 The ten pAID case cohorts and top pAID-association loci identified. (a) The ten pediatric autoimmune diseases studied. (b) Top pAID-
association signals identified by inverse 2 meta-analysis. The top 27 loci (where at least one lead SNP reached genome-wide significance:  
PMETA < 5 × 10−8) are annotated with the candidate gene symbol. (c) Novel and established pAID-association loci. Top left: rs706778 (chr10p15.1)  
is a known DNase I peak and an intronic SNP in IL2RA and was associated with THY, AS, PSOR, CEL, T1D and JIA. Top right: rs755374 (chr5q33.3) is 
an intergenic SNP upstream of IL12B and was associated with AS, CEL, UC and CD. Bottom left: rs2807264 (chrXq26.3), mapping near CD40LG, was 
associated with CEL, UC and CD, and chr15q22.33 (rs72743477), also mapping to an intronic position in SMAD3, was associated with UC, CD and AS.  
Bottom right: SNPs are colored according to pairwise LD (r2) with respect to the most strongly associated lead SNP in the locus. Associated pAIDs are 
indicated at the upper left. pAID associations are color-coded according to the key in each plot. (d) Pleiotropic candidate genes have pleiotropic  
effect sizes and directions across pAIDs. Although a few pleiotropic SNPs had consistent effect directions across diseases (e.g., IL21), for many loci 
(e.g., PTPN22 and CLEC16A), the candidate SNP had variable effect directions across diseases. The radii of the wedges correspond to the absolute 
values of the Z-scores (beta/s.e.) for each pAID, and the color indicates whether the SNP is protective (green) or risk-associated (red) for each disease.
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Biological support of associated loci from the public domain
To integrate our results with experimental and predictive biological 
data, we curated four categories of SNP annotations: (1) functional: 
variants that are exonic, affect transcription, are miRNA targets or 

tag copy-number polymorphic regions; (2) regulatory: transcription  
factor (TF)-binding sites and DNase-hypersensitivity sites or expression 
quantitative trait locus (eQTL) SNPs; (3) conserved: variants with evo-
lutionarily constrained positions or CpG islands; or (4) prior literature  
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support: a gene or locus previously reported to be associated with 
autoimmune diseases or immune function. Indeed, 100% of the GWS 
lead SNPs or their nearby LD proxies (r2 > 0.8 on the basis of 1KGP-RP 

within 500 Kb up- or downstream) belonged to one or more of these 
categories (Fig. 3a). Nevertheless, the majority of the 27 GWS SNPs did 
not confer transcriptional consequences (51% were intronic variants 

Table 1 T
.

m
wenty-seven independent loci reaching genome-wide significance (PMETA < 5 × 10−8) after adjustment for the use of shared 

controls using an inverse x2  meta-analysis across the pAIDs
Chr Pos (Mb) SNP Region Gene A1 MAF PMETA Known P* pAIDs

1 67.7 rs11580078 1p31.3 IL23R G 0.43 8.4 × 10−11 1.0 × 10−146 CD#
1 82.2 rs2066363 1p31.1 ADGRL2 C 0.34 8.4 × 10−11 Novel CVID, JIA
1 114.3 rs6679677 1p13.2 PTPN22 A 0.09 8.4 × 10−11 1.1 × 10−88 THY#, PSOR, T1D#, JIA#
2 234.2 rs36001488 2q37.1 ATG16L1 C 0.48 8.4 × 10−11 1.0 × 10−12 PSOR, CD#
3 49.6 rs4625 3p21.31 DAG1 G 0.31 8.4 × 10−11 1.0 × 10−47 PSOR#, CEL, UC#, CD#
4 123.6 rs62324212 4q27 IL21 A 0.42 2.6 × 10−8 1.0 × 10−9 THY, AS, CEL#, CVID, UC#, T1D#, JIA#, CD#
4 183.7 rs7660520 4q35.1 TENM3 A 0.26 8.4 × 10−11 Novel THY, AS, CEL, SLE, CVID, JIA
5 40.5 rs7725052 5p13.1 PTGER4 C 0.43 8.4 × 10−11 1.4 × 10−10 CD#
5 55.4 rs7731626 5q11.2 ANKRD55 A 0.39 1.4 × 10−10 2.7 × 10−11 JIA#, CD#
5 131.8 rs11741255 5q31.1 IL5 A 0.42 1.6 × 10−9 1.4 × 10−52 PSOR#, CEL, CD#
5 158.8 rs755374 5q33.3 IL12B T 0.32 2.3 × 10−10 1.4 × 10−42 AS#, CEL, UC#, CD#
9 117.6 rs4246905 9q32 TNFSF15 T 0.28 9.5 × 10−9 1.2 × 10−17 UC#, CD#
9 139.3 rs11145763 9q34.3 CARD9 C 0.40 3.3 × 10−8 1.0 × 10−6 AS#, UC#, CD#
10 6.1 rs706778 10p15.1 IL2RA T 0.41 6.3 × 10−9 1.7 × 10−12 THY, AS, PSOR#, CEL, T1D#, JIA#
10 37.6 rs7100025 10p11.21 ANKRD30A  G 0.34 8.4 × 10−11 Novel JIA
10 64.4 rs10822050 10q21.2 ZNF365 C 0.39 8.4 × 10−11 5.0 × 10−17 SLE, CD#
10 81.0 rs1250563 10q22.3 ZMIZ1 C 0.29 1.3 × 10−8 1.1 × 10−30 PSOR#, CD#
10 101.3 rs1332099 10q24.2 NKX2-3 T 0.46 9.1 × 10−11 1.0 × 10−54 UC#, CD#
11 2.2 rs17885785 11p15.5 INS T 0.20 8.4 × 10−11 4.4 × 10−48 T1D#
12 40.8 rs17466626 12q12 LRRK2 G 0.02 3.2 × 10−10 3.0 × 10−10 AS, CD#
12 56.4 rs1689510 12q13.2 SUOX C 0.31 4.0 × 10−9 1.1 × 10−10 PSOR#, T1D#
15 67.5 rs72743477 15q22.33 SMAD3 G 0.21 8.4 × 10−11 2.7 × 10−19 AS, UC, CD#
16 28.3 rs12598357 16p11.2 SBK1 G 0.39 4.4 × 10−9 1.0 × 10−8 THY, AS#, PSOR, CEL, UC, CD#
16 50.3 rs77150043 16q12.1 ADCY7 T 0.23 6.0 × 10−9 Novel PSOR, CD
16 50.7 rs117372389 16q12.1 NOD2 T 0.02 8.4 × 10−11 2.9 × 10−69 CD#
21 40.5 rs2836882 21q22.2 PSMG1 A 0.27 4.8 × 10−8 2.8 × 10−14 UC#, CD#
23 135.7 rs2807264 Xq26.3 CD40LG C 0.21 1.3 × 10−8 Novel CEL, UC, CD
Chr, chromosome; Pos (Mb), position in hg19; Region, cytogenetic band; A1, alternative allele; MAF, minor allele frequency (controls); Known P*, lowest P value from published 
association studies. Pound symbols (#) denote previously reported disease-associated SNPs. “Novel” denotes new loci (bolded) that reached genome-wide significance for the first 
time in the present study (to our knowledge).
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Figure 2 Pleiotropic loci with heterogeneous effect directions across pAIDs.  
(a) Disease-specific Z-scores (beta/s.e.) for each SNP identified as having different  
effect directions across the ten pAIDs and as detailed in the figure. Circles (color-coded  
by disease as in key) denote diseases where the indicated SNP had an opposite effect  
compared with that of the group of pAIDs identified as sharing the lead association on  
the basis of results of the model search (black triangles). (b) Clustering of pAIDs across  
the lead loci on the basis of disease-specific effect sizes. Agglomerative hierarchical clustering across ten pAIDs on the basis of normalized directional 
Z-scores (beta/s.e.) resulting from logistic regression analysis in each disease for the 27 lead loci based on those disease combinations identified by the 
model search analysis as producing the strongest association-test statistics.
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and 28% were intergenic or up- or downstream 
gene variants), which suggests that many of 
these SNPs either tag the true causal variants 
or affect disease risk through regulatory and/or 
epigenetic mechanisms (Fig. 3b).

To determine whether the set of pAID-
associated SNPs was enriched for specific 
annotation categories, we compared its 
annotation percentage with the percentages 
of 10,000 simulated sets of SNPs with MAF > 
0.01 drawn from 1KGP-RP for each category. 
We found that pAID-associated SNPs were 
enriched for CpG islands (Pperm < 1.0 × 10−4), 
TF-binding sites (Pperm < 3.4 × 10−3) and 
miRNA-binding sites (Pperm < 1.0 × 10−4), 
among other findings of biological disease 
relevance (Supplementary Fig. 1d,e).

Candidate pAID genes share  
expression profiles across immune  
cell types and tissues
Recent studies show that gene-based associa-
tion testing (GBAT) may boost the power of 
genetic discovery33–35. We performed GBAT (with VEGAS33) using 
genome-wide summary-level PMETA values. We identified 182 sig-
nificant pAID-associated genes (simulation-based Psim < 2.80 × 10−6) 
on the basis of a Bonferonni adjustment for ~17,500 protein-cod-
ing genes in the genome (Supplementary Table 3a). To illustrate the 
biological relevance of this set of genes, we examined their transcript 
levels in a human gene expression microarray data set consisting of 
12,000 genes and 126 tissue and/or cell types36. pAID-associated gene 
expression across immune tissues or cell types (ES-I, 4.05) was notably 
higher than that across non-immune types (ES-NI, 2.10) on the basis 
of a one-tailed Wilcoxon rank-sum test (P < 1.66 × 10−10). When all 
extended MHC genes were excluded, the average expression of pAID-
associated genes remained significantly higher (P < 1.27 × 10−7) for 

immune (1.043) than for non-immune (0.648) tissues and cell types. 
The immune-specific enrichment of pAID-associated gene transcripts 
was comparable to that observed in adult cohorts12; comparatively, 
schizophrenia-associated genes showed no such enrichment (Fig. 4a). 
We observed similar results when we used the Kolmogorov-Smirnov 
test (Supplementary Fig. 5a).

We examined the expression of pAID genes across a whole- 
transcriptome data set comprising more than 200 murine immune cell 
types isolated by flow cytometry (ImmGen37; Online Methods and 
Supplementary Table 3c)..

m
 Genes associated with pAIDs demonstrated 

differential expression across immune cell types (Supplementary  
Fig. 5b) and showed higher expression than genes associated  
with non-immune traits, similar to results observed from human tissue  
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data (Fig. 4b). As the expression levels of these 
‘pleiotropic’ genes varied diversely across 
immune cell types, we performed agglom-
erative hierarchical clustering to identify sets 
of genes sharing similar profiles. Genes that 
belonged to the same cluster (and thus shared 
similar expression profiles) were found to be enriched for association 
with specific individual or multiple autoimmune diseases (Fig. 4c). For 
example, cluster 1 genes, such as ICAM1, CD40, JAK2, TYK2 and IL12B, 
with known roles in immune effector cell activation and proliferation, 
were enriched for association with PSC and UC and were associated 
with both diseases (P < 6.82 × 10−4, one-tailed Fisher’s exact test), and 
the expression of these genes was highest in a small subset of CD11b+ 
lymphoid dendritic cells. These findings are consistent with the clinical 
observation that as many as 80% of patients diagnosed with PSC have 
been diagnosed with UC, and that the risk of PSC is approximately 
600-fold higher in patients with UC38,39. Cluster 2 genes included genes 
encoding a number of cytokines and cytokine-response factors, such as 
IL19, IL20, STAT5A and IL2RA, the products of which regulate effector 
T cell activation, differentiation and proliferation. All of these were more 
broadly expressed across mature natural killer (NK) cells, NK T cells  
and T cells, as well as neutrophils. This cluster of genes was enriched 
for association with MS (P < 9.8 × 10−4), with CEL (marginally)  
(P < 0.062) and with both diseases (P < 3.41 × 10−4). Genes encod-
ing nucleic acid–binding proteins, such as ILF3, CENPO, MED1  
and NCOA3, were enriched in cluster 3. Genes in this cluster were 
jointly associated with SLE and PS (P < 0.03), which is consistent with 
experimental and clinical data demonstrating that early defects in  

B cell40,41 and T cell42–44 clonal selection, respectively, may have  
important roles in the etiology of these diseases.

Quantification of genetic risk factors shared across pAIDs
We developed a novel method to specifically examine genome-wide 
pairwise-association signal sharing (referred to as a GPS test) across the 
pAIDs (Online Methods). Only data from the genotyped pAID cohort 
were used for this analysis. After Bonferroni adjustment for 45 pairwise 
combinations, the GPS test identified evidence of sharing between a 
number of pAID pairs noted in prior reports on autoimmune disease, 
including T1D-CEL (Pgps < 3.44 × 10−5), T1D-THY (Pgps < 2.03 × 10−3) 
UC-CD (Pgps < 2.36 × 10−3) and AS-PS (Pgps < 8.15 × 10−3). We also 
identified a strong GPS score for JIA-CVID (Pgps < 6.88 × 10−5). The 
correlations between JIA-CVID (Pgps < 7.30 × 10−5) and UC-CD (Pgps <  
7.32 × 10−4) were more significant after the exclusion of markers from 
within the MHC region (Supplementary Fig. 7b).

Finally, we examined evidence of sharing across the full range of 
autoimmune diseases using ImmunoBase27. We identified signifi-
cant associations between UC-CD (P < 2.15 × 10−4) and JIA-CVID  
(P < 1.44 × 10−6), along with a number of novel pairwise relation-
ships that included autoimmune diseases other than the ten in this  
study, such as that between SJO-SS .

m
(P < 1.30 × 10−28) and PBC-SJO  Q10Q10
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(P < 3.86 × 10−12). We plotted those relationships that were significant 
after Bonferroni adjustment for 153 pairwise tests using an undirected 
weighted network (Fig. 5b and Supplementary Table 4). Collectively, 
these results support genetic sharing between the various autoim-
mune diseases and allow for further refinement of the shared signals, 
potentially enabling the application of targeted therapeutic interven-
tions at multiple levels, such as along the CD40L-CD40, JAK-STAT 
and TH1/TH2-TH17-interleukin signaling pathways.

DISCUSSION
A major goal of this study was to identify shared genetic etiologies 
across pAIDs and illustrate how they jointly and disparately affect 
pAID susceptibility. Knowledge of shared genetic etiologies may help 
pinpoint common therapeutic mechanisms, especially since certain 
pAIDs (for example, THY, CEL and T1D) exhibit high rates of comor-
bidity and concordance in twins with others (for example, CD and 
UC) being clustered in families9,19,45,46.

Of the 27 GWS pAID-association loci identified, 81% were shared by 
at least two pAIDs (Table 1 and Supplementary Table 1). Moreover, 

5 of the 27 loci were novel signals not previously reported at GWS 
levels in association with autoimmune diseases, including chr1p31.1 
(rs2066363), mapping near ADGRL2, a gene that encodes a member of 
the latrophilin subfamily of G protein–coupled receptors that regulates 
exocytosis. Although this signal was associated with JIA and CVID, a 
microsatellite study of PBC in a Japanese cohort localized an associa-
tion signal to a 100-Kb region enclosing ADGRL2 (ref. 47). Nominally 
significant replication support at this locus was identified in the adult 
UC cohort from the IBD Consortium (REF)..

m
 Both JIA and CVID are 

among the six pAIDs (THY, AS, CEL, SLE, CVID and JIA) associated 
with the chr4q35.1 locus (rs7660520), which resides just downstream 
of TENM3. The observed association with a broad range of pAIDs may 
be related to eQTL signals in TENM3 SNPs that correlate with serum 
eosinophil counts48 and immunoglobulin G (IgG) glycosylation rates; 
the latter was referenced in a study showing a pleiotropic role for IgG 
glycosylation–associated SNPs in autoimmune-disease risk suscepti-
bility49. The third novel association was identified near chr10p11.21 
(rs7100025), mapping to TF gene ANKRD30A, which encodes an 
antigen recognized by CD8+ T cell clones50. The fourth signal was 
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associated with the inflammatory diseases PS and CD near chr16q12.1 
(rs77150043). This intronic SNP in ADCY7 encodes a member of the 
adenylate cyclase enzyme family and is strongly expressed in peripheral 
leukocytes, spleen, thymus and lung tissues51, and it is supported by 
data from studies in mice52. The fifth novel signal, rs34030418, map-
ping near CD40LG and associated with CEL, UC and CD, is the ligand 
of the prominent TNF superfamily receptor CD40 (refs. 53,54). The 
CD40 ligand is a particularly compelling candidate, as the locus encod-
ing the CD40 receptor is an established GWAS locus in RA and MS, has 
been functionally studied in cell culture and animal models, and was 
the focus of a recent large-scale RA drug-screening effort55.

A set of GWS candidate SNPs were enriched for miRNA and TF-
binding sites. We performed a gene-set enrichment analysis56 using 
GBAT and identified 39 significant (PBH < 0.05) miRNAs, including as 
top candidates two well-known miRNA families, miR-22 and miR-135a 
(Supplementary Table 5a). miR-135a has been shown to target IRS2, a 
regulator of insulin signaling and glucose uptake, in model systems57. 
Our candidate genes were enriched for targets of dozens of TFs, with the 
most prominent being SP1 (PBH < 2.30 × 10−12), NFAT (PBH < 8.54 × 10−9)  
and NFKB (PBH < 1.03 × 10−8) (Supplementary Table 5b).

Using GBAT with DAVID58, GSEA36, IPA59 and Pathway Commons60, 
among others, we identified strong enrichment for proteins that act in 
cytokine signaling; antigen processing and presentation; T cell acti-
vation; JAK-STAT activation; and TH1-, TH2- and TH17-associated  
cytokine signaling (Supplementary Table 6). Of these pathways, 
JAK2 signaling was particularly compelling (PBH < 6.93 × 10−5; 
Supplementary Fig. 6b), consistent with the enrichment of known  
protein-protein interactions (PSTRING < 1 × 10−20) (Supplementary  
Fig. 6). We also uncovered evidence supporting shared genetic sus-
ceptibility for disease pairs that have not yet been well established 
(for example, JIA-CVID). The association between JIA and CVID is 
noteworthy, given that CVID actually represents a group of complex 
immunodeficiencies rather than a classic autoimmune disease. When 
we examined the overlap between CVID and all other pAIDs using 
both GPS (Padj < 3.10 × 10−3) and locus-specific pairwise sharing (LPS) 
(Padj < 1.47 × 10−8) network analysis tests, we consistently observed 
overrepresentation of interaction between CVID and JIA (Fig. 5 and 
Supplementary Fig. 7b). Our results show that more than 70% (19) of 
the 27 GWS loci we identified were shared by at least three autoimmune 
diseases (Table 1), including both previously reported (for example,  
IL2RA6 and IL12B4) and novel (for example, TENM3 (ref. 6) and 
CD40LG3) signals..

m
 Moreover, using tissue-specific gene set enrichment 

analysis, we not only highlighted the expected enrichment of genes 
associated with CEL and SLE in  T cells, CD4+ T cells and NK T cells 
but also identified interesting joint enrichment of genes associated with 
PSC and UC in a set of mature dendritic cells (Fig. 4c).

Many of the shared risk factors in pAIDs affect genes encoding pro-
teins that are established therapeutic targets (for example, CD40L and 
CD40 (refs. 54,55)), and a number of the genes identified here have 
diverse biological effects and are currently being explored for clini-
cal uses..

m
 Consequently, drug-repurposing approaches may present 

feasible options in pAIDs, where these gene networks and pathways 
could be targeted in an expedited manner.

METHODS
Methods and any associated references are available in the online 
version of the paper.

Note: Any Supplementary Information and Source Data files are available in the 
online version of the paper.
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ONLINE METHODS
Study population. Affected subjects and controls were identified either 
directly as described in prior studies61–70 or from de-identified samples and 
associated electronic medical records (EMRs) in the genomics biorepository 
at The Children’s Hospital of Philadelphia (CHOP). The predominant majority 
(>80%) of the included cases for IBD, T1D and CVID have been described in 
previous publications.

Details of each study population are outlined below. EMR searches were 
conducted with previously described algorithms based on phenotype mapping 
established using phenome-wide association study (PheWAS) ICD-9 code map-
ping tables61–63,70 in consultation with qualified physician specialists for each 
disease cohort. All DNA samples were assessed for quality control (QC) and gen-
otyped on the Illumina HumanHap550 or HumanHap610 platform at the Center 
for Applied Genomics (CAG) at CHOP. Note that the patient counts below refer 
to the total recruited sample size from which we excluded non-qualified samples 
or genotypes that did not pass QC criteria required for inclusion in the genetic 
analysis (for example, because of relatedness or poor genotyping rate).

The IBD cohort comprised 2,796 individuals between the ages of 2 and 17,  
of European ancestry, and with biopsy-proven disease, including 1,931 with  
CD and 865 with UC and excluding all patients with unclassified IBD. Affected 
individuals were recruited from multiple centers from four geographically 
discrete countries and were diagnosed before their 19th birthday according to 
standard IBD diagnostic criteria, as previously reported63,65.

The T1D cohort consisted of 1,120 subjects from nuclear family trios  
(one affected child and two parents), including 267 independent Canadian T1D 
patients collected in pediatric diabetes clinics in Montreal, Toronto, Ottawa 
and Winnipeg and 203 T1D patients recruited at CHOP since September 2006.  
All patients were Caucasian by self-report and between 3 and 17 years of age, 
with a median age at onset of 7.9 years. All patients had been treated with insulin 
since diagnosis. Disease diagnosis was based on these clinical criteria, rather 
than on any laboratory tests.

The JIA cohort was recruited in the United States, Australia and Norway 
and comprised a total of 1,123 patients with onset of arthritis at less than  
16 years of age. JIA diagnosis and JIA subtype were determined according to 
the International League of Associations for Rheumatology (ILAR) revised 
criteria71 and confirmed using the JIA Calculator72 (http://www.jra-research.
org/JIAcalc/), an algorithm-based tool adapted from the ILAR criteria. Prior  
to standard QC procedures and exclusion of non-European ancestry, the  
JIA cohort comprised 464 subjects of self-reported European ancestry from 
Texas Scottish Rite Hospital for Children (Dallas, Texas, USA) and the Children’s 
Mercy Hospitals and Clinics (Kansas City, Missouri, USA); 196 subjects from 
CHOP; 221 subjects from the Murdoch Children’s Research Institute (Royal 
Children’s Hospital, Melbourne, Australia); and 504 subjects from Oslo 
University Hospital (Oslo, Norway).

The CVID study population consisted of 223 patients from Mount Sinai 
School of Medicine (MSSM; New York, New York, USA), 76 patients from 
University of Oxford, (London, England), 47 patients from CHOP, and 27 
patients from University of South Florida (USF; Tampa, Florida, USA). The 
diagnosis in each case was validated against the ESID-PAGID diagnostic criteria, 
as previously described73. Although the diagnosis of CVID is most commonly 
made in young adults (ages 20–40), all of the CHOP and USF subjects had  
pediatric-age-of-onset disease, whereas the majority of the subjects from MSSM 
and Oxford had onset in young adulthood. We note that as the number of  
individuals with adult-onset CVID is so small (less than 5% of all cases  
presented) and all ten diseases studied here can present with pediatric age of 
onset, we elected to refer to the cohort material as pAID.

The balance of the pediatric subjects’ (THY, SPA, PSOR,
.

m
 CEL and SLE) 

samples were derived from our biorepository at CHOP, which includes more 
than 50,000 pediatric patients recruited and enrolled by CAG at CHOP 
(Supplementary Table 14

.

m
  includes details of genotyped subjects within the 

CAG pediatric biobank). These individuals were confirmed for diagnosis of 
THY, SPA, PSOR, CEL and SLE in the age range of 1–17 years at the time of 
diagnosis and were required to fulfill the clinical criteria for these respective 
disorders, as confirmed by a specialist. Only patients that upon EMR search 
were confirmed to have at least two or more in-person visits, at least one of 
which was with the specified ICD-9 diagnosis code(s), were pursued for clinical 
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confirmation (Supplementary Table 15
.

m
 presents ICD-9 inclusion and exclusion 

codes). We used ICD-9 codes previously identified and used for PheWASs or 
EMR-based GWASs and agreed upon by board-certified physicians62,63.

Age- and gender-matched control subjects were identified from the CHOP-
CAG biobank and selected by exclusion of any patient with any ICD-9 codes 
for disorders of autoimmunity or immunodeficiency61 (http://eicd9.com/). 
Research ethics boards of CHOP and other collaborating centers approved this 
study, and written informed consent was obtained from all subjects (or their 
legal guardians). Genomic DNA extraction and sample QC before and after 
genotyping were performed using standard methods as described previously64. 
All samples were genotyped at CAG on HumanHap550 and 610 BeadChip arrays 
(Illumina, CA). To minimize confounding due to population stratification,  
we included only individuals of European ancestry (as determined by both  
self-reported ancestry and principal-component analysis (PCA)) for the  
present study. Details of the PCA are provided below.

Genotyping, imputation, association testing and QC. Disease-specific QC. 
We merged the genotyping results from each disease-specific cohort with data 
from the shared controls before extracting the genotyping results from SNPs 
common to both Infinium HumanHap550 and 610 BeadChip array platforms 
and performing genotyping QC. SNPs with a low genotyping rate (<95%) or 
low MAF (<0.01) or those significantly departing from the expected Hardy-
Weinberg equilibrium (HWE; P < 1 × 10−6) were excluded. Samples with low 
overall genotyping call rates (<95%) or determined to be of outliers of European 
ancestry by PCA (>6.0 s.d. as identified by EIGENSTRAT74) were removed.  
In addition, one of each pair of related individuals as determined by identity- 
by-state analysis 

.

m
(PI_HAT > 0.1875) was excluded, with cases preferentially 

retained where possible.
Merged-cohort QC. To prepare for whole-genome imputation across the 

entire study cohort, we combined case samples across the 10 pAIDs with the 
shared control samples. We repeated the genotyping and sample QC with  
the same criteria as described above, leaving a final set of ~486,000 common 
SNPs passing individual-cohort and merged-cohort QC. We again performed 
identity-by-state analysis and removed related samples (in order to remove 
related subjects that may have been recruited for different disease studies). We 
also repeated the PCA and removed population outliers. The final cohort, after 
the application of all QC metrics mentioned above, included a total of 6,035 
patients representing ten pAIDs and 10,718 population-matched controls.

Note that because of the merged QC, compared with the sum of all ten  
disease-specific GWASs, the final case and control counts in the merged  
cohort were smaller than the “sum of all cases and controls” (Fig. 1a). In addition,  
to avoid the potential for confounding due to the presence of duplicated  
samples, we assigned individuals fitting the diagnostic criteria for two or more 
pAIDs to whichever disease cohort had the smaller (or smallest) sample size.  
No subject was included twice. A total of 160 subjects in the study cohort  
fulfilled criteria for two or more diseases but were counted only once in our 
reported total of 6,035 unique subjects.

Whole-genome phasing and imputation. We used SHAPEIT75 for whole- 
chromosome prephasing and IMPUTE2 (ref. 76) for imputation to the 1KGP-RP 
(https://mathgen.stats.ox.ac.uk/impute/impute_v2.html, June 2014 haplotype 
release). For both, we used parameters suggested by the developers of the soft-
ware and described elsewhereto account75–77. Imputation was done for each 
5-Mb regional chunk across the genome, and data were subsequently merged 
for association testing. Prior to imputation, all SNPs were filtered using the 
criteria described above.

To verify the imputation accuracy, we validated randomly selected SNPs  
that reached a nominally significant P value after imputation. Because com-
mercially designed genotyping probes were not readily available, we performed 
Sanger sequencing by designing primers to amplify and sequence the 200-bp  
region around the imputed SNP markers for two separate 96-well plates.  
We manually visualized and examined sequences and chromatograms  
using SeqTrace78. Results from this are presented in Supplementary Table 2a, 
showing >99% mean accuracy.

In addition, a subset of the IBD and CVID subjects were subsequently  
genotyped on the Immunochip (Illumina) platform. We compared the genotype 
concordance of all pAID GWAS imputed SNPs that were directly genotyped on 
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the Immunochip after performing sample and marker QC as described above. 
Results are shown in Supplementary Table 2b.

Disease-specific association testing. We performed whole-genome association 
testing using post-imputation genotype probabilities with the software SNPTEST 
(v2.5)24. We used logistic regression to estimate odds ratios and betas, 95%  
confidence intervals and P values for trend, using additive coding for genotypes 
(0, 1 or 2 minor alleles). For autosomal regions, we used a score test, whereas  
for regions on ChrX we used the ChrX-specific SNPTEST method Newml.  
QC was performed directly after association testing, excluding any SNPs with  
an INFO score of <0.80, HWE P < 1 × 10−6, and MAF < 0.01 (overall).

In all analyses, we adjusted for both gender and ancestry by conditioning 
on gender and the first ten principal components derived from EIGENSTRAT 
PCA79. The GC values for all cohorts were within acceptable limits; the  
highest was observed for the cohort with the largest case sample size, namely, 
CD ( GC < 1.07), consistent with what was previously reported for this  
data set65. In fact, we have previously reported on all the non-CHOP cases 
included in the present analysis in individual studies using CHOP controls 
and shown that these individual case-control analyses were well controlled for 
genomic inflation61–70. A QQ plot is provided for each independent cohort  
in Supplementary Figure 2a.

Meta-analysis to identify shared pAID association loci. To identify association  
loci shared across pAIDs, we meta-analyzed the summary-level test statis-
tics from each of the study cohorts after extracting those markers that passed  
post-association testing QC for all ten individual disease-specific analyses. To 
adjust for confounding due to the use of a shared or pooled control population, 
we applied a previously published method to perform an inverse weighted 2 
meta-analysis80.

We LD-clumped the results of the meta-analysis (PLINK) and identified  
27 LD-independent associations (r2 < 0.05 within 500 kB up- or downstream 
of the lead or most strongly associated SNP) reaching a conventional genome-
wide significance threshold of PMETA < 5 × 10−8. We observed that the calculated 
meta-analysis GC was less than 1.09. As recently discussed by de Bakker and 
colleagues and shown in a number of large-scale GWAS publications, GC is 
related to sample size81. As discussed by Yang et al., GC depends on the relative 
contribution of variance due to population structure and true associations versus 
sampling variance: with no population structure or systematic error, inflation 
would still depend on heritability, genetic architecture and study sample size82. 
On the basis of de Bakker et al.’s recommendations, we also calculated a sample-
size-adjusted 1000 by interpolating the GC that would have been expected if this 
study had included only 1,000 cases and 1,000 controls. We performed this only 
for the meta-analysis results, as the case and control counts for the meta-analysis 
were both significantly greater than 1,000 (Fig. 1a).

Model search to identify pAIDs associated with the lead signals. The meta-
analysis identified SNPs significantly associated with at least one pAID. To 
determine which pAIDs each SNP was most strongly associated with, we  
performed a model or ‘disease-combination’ search. For the lead SNP in 
each pAID-association locus, we searched for the pAID disease combination  
that, when the corresponding cases were merged in a mega-analysis, yielded the 
largest association test statistic.

To identify the disease phenotypes most likely contributing to each identi-
fied association signal, we applied the “h.types” method as implemented in the 
R statistical software package ASSET83 to perform an exhaustive disease-sub-
type model search. Note that ASSET provides both a method for genotype-level 
association testing (h.types used in this study) and a summary-level modified 
fixed-effect meta-analysis approach (“h.traits”) that allows for heterogeneity of 
SNP effects across different phenotypes. Both methods exhaustively enumer-
ate each combination of phenotypes that are jointly considered, and therefore 
test a total of

.
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pAID disease model combinations n
n i ii

r !
( )!( )1

where r is the total number of disease subtypes assigned to cases (for  
example, ranging from one to ten pAIDs) and n is the total number of disease 
subtypes (i.e., ten pAIDs). Note that this reduces to 2n – 1 (or 1,023 unique 
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combinations here), as in this case we considered all possibilities of r across n of 
ten diseases. The ASSET algorithm iteratively tests each pAID case combination 
using logistic regression to determine whether there is an association between 
genotype counts and case status. For each SNP tested, the ‘optimal’ subtype 
model is the combination of pAIDs that, when tested against the shared controls 
in the logistic regression analysis.

.

m

Identification of lead associated variants showing opposite direction of effect. For 
each of the top 46 associating loci (PMETA< 1 × 10−6), we identified those  
loci for which the lead SNP had an effect direction (on the basis of logistic  
regression betas) opposite that reported for the disease combination identified  
by the subtype model search and whose corresponding association P value 
reached at least nominal significance (P < 0.05). We identified nine instances.

Candidate gene prioritization. To annotate the lead SNPs to candidate  
genes, we prioritized the mapping to candidate genes systematically in the  
following manner:

1.  If the SNP or locus was previously reported in autoimmune diseases at 
genome-wide significance, we provided the candidate gene symbol, where 
available, as identified in the GWAS Catalog84 or ImmunoBase83.

2.  If an SNP was annotated as coding or fell within the coding DNA sequence 
(i.e., intronic or in the UTRs), we reported that gene as identified by the 
variant effect predictor (VEP)85.

3.  If the SNP was upstream, downstream, or intergenic, we prioritized the 
gene by using the best candidate gene identified with the network tool 
DAPPLE86.

4.  If none of the above was feasible, we manually curated the most ‘likely’ gene 
on the basis of the observed LD block and evidence of prior association 
signals with autoimmune diseases or other immune-related phenotypes 
as presented in the dbSNP or GWAS catalog.

Functional or biological annotations and enrichment analysis using publicly acces-
sible resources. We annotated the lead pAID-associated SNPs using publicly 
available functional and biological databases and resources. We considered the 
top imputed lead SNP for each locus and, in addition, any of its near-perfect 
proxies (defined as r2 > 0.8 within 500 kB up- or downstream) on the basis of 
the 1KGP-RP.

We included annotation, expression, interaction and network data from the 
following resources:

1.  Genomic mapping and annotation: SNAP87, SNP-Nexus88, Ensemble89 
and UCSC90.

2.  Regulatory annotations: EnCODE (TF-binding sites and DNase-hyper-
sensitivity sites)91, GTex92 (eQTLs), and a published lymphoblastoid  
cell line eQTL data set93.

3.  Functional annotations: SIFT94, Polyphen95, miRNA target site  
polymorphisms96,97.

4.  Conservational or evolutionary predictions: GERP98, PHAST++99,  
CpG islands100.

5.  Literature search: GAD101, NHGRI GWAS catalog102, dbGAP103, or published  
Immunochip studies104 (www.immunobase.org) for literature support.

6.  Gene expression and enrichment analysis: ImmGen102 (murine) and 
whole-transcriptome analysis across 126 tissues104 (human).

7.  Protein-protein interaction (PPI) database: DAPPLE86, STRING105.
8.  Pathway-based and gene set enrichment analysis: Gene Ontogeny106, 

Webgestalt107, Wikipathways108, IPA109, DAVID110, GSEA111, and 
Pathways Commons112.

9.  Gene network analysis and visualization: DAPPLE86 and VEP85 to pri-
oritize candidate causal genes and Grail113 for text-mining of PubMed 
database for coassociations.

Functional and biological annotations (categories 1–5) for the 27 lead SNPs 
are illustrated in Figure 3; annotations are also provided for the 46 GWM loci  
in Supplementary Figure 4. The following annotation types were used:

1.  Regulatory: EnCODE consensus TF-binding sites (T), DNase I hypersen-
sitivity sites (S), or published eQTL signals (E)
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2.  Functional: known mutations in PolyPhen or SIFT (A), experimen-
tally validated (miRBASE 18.0) and predicted (mirSNP) miRNA target  
sites (R), or SNPs that tag regions containing common copy-number  
variation regions reported by the database of genomic variants (DGV) (V)

3.  Conserved: conserved nucleotide sequences based on GERP++/phastCon 
(C) or known CpG islands that correlate with epigenetic methylation  
patterns (M)

4.  Literature-supported: published association with immune or inflammatory 
diseases or immune-related endophenotypes from candidate studies or 
GWASs catalogued in the Genetic Association Database, NHGRI GWAS 
catalog, dbGAP, or Immunochip studies (L)

In addition to determining whether the 27 GWS pAID-associated SNPs  
were enriched for a given annotation type, we performed Monte Carlo simu-
lations to resample 10,000 times the SNPs (MAF > 0.01 in Europeans) from  
all SNPs in 1KGP-RP. As for the 27 lead SNPs, for each set of 100 randomly 
sampled SNPs, we expanded the list by first identifying all nearby SNPs in strong 
LD (i.e., LD proxies with r2 > 0.8 within 500 kB up- or downstream) within 
the 1KGP-RP data set filtered for only SNPs with MAF > 0.01 in the European 
population. We then annotated each original and any proxy SNPs as above for 
each major annotation category. We collapsed the information for all proxies 
identified for a given lead such that for any given category, if the lead SNP or  
any of its proxies were annotated, the lead SNP was marked as annotated.  
We then calculated the frequency of annotation for the 100 SNPs in each set. After 
sampling and annotating 100-SNP sets 10,000 times, we use the permutation- 
derived distribution of annotation percentages for each annotation type  
to calculate an enrichment P value such that 

P
f F

enrich
pAID conclusiveCount

1
10 000

( )
,

where f is the percentage of SNPs in the pAID set that are annotated and F is 
the distribution of the percentage of SNPs annotated across 10,000 sets of 100 
SNPs resampled from the 1KGP-RP using only markers with MAF > 0.01 in 
Europeans.

Hierarchical clustering based on effect size and direction of association. We 
performed agglomerative hierarchical clustering across the top 27 independent  
loci using the directional Z-score obtained from logistic regression analysis  
in each of the ten disease-specific GWASs, defined as 

Z
beta (effect size)

s.e.

The standardized and normalized Z-scores were used as inputs to the agglom-
erative hierarchical clustering. We used Ward’s minimal-variance method to 
identify relatively consistent gene and locus cluster sizes.

Gene-based association testing. Given our interest in genetic overlap across 
pAIDs, we sought to identify genes associated with pAIDs in a disease-agnostic 
manner that was insensitive to locus and phenotypic heterogeneity. We used 
VEGAS114, a set-based method, to perform GBAT.

As input, we used the nominal PMETA values from the pooled, inverse 2 meta-
analysis for the ten pAIDs across the genome as the input summary statistics for 
VEGAS, without considering which specific diseases were identified in the model 
search analysis. We assigned SNPs to gene regions and performed 107 simulations 
to estimate the gene-based P value as described in VEGAS’s documentation. We 
used two thresholds: Psim < 2.8 × 10−6 to identify significant candidate genes, on 
the basis of a Bonferroni adjustment for approximately 17,500 genes tested, and 
a false discovery rate (FDR) of <2%, which corresponds to a q value of <0.0205, 
which was used only for pathway and gene set enrichment analysis.

Tissue-specific gene set enrichment analysis. With few exceptions, most genes 
that are known to have a causative role in autoimmune disease have been shown 
to regulate molecular or subcellular processes in immune or immune-related 
tissues. If candidate pAID-associated genes are relevant to autoimmune-disease 
biology, then expression of these genes would be expected to be, on average, 
higher across immune or immune-related tissues (as compared with expression 

in non-immune-related tissues). Thus, we compared the expression of candidate 
pAID-associated genes identified by GBAT with that of non-candidate genes 
in a variety of tissues.

We curated the expression of the transcriptome in a broad spectrum of  
human tissues using a publicly available data set consisting of summary-level, 
normalized gene expression levels for more than 12,000 unique genes across 126 
tissues and/or cell types, including a large number of immune tissues and cells104. 
We downloaded the processed data set “mean expression data matrix.”

Across the 126 unique tissues, we tested whether the median or cumulative 
distribution of expression of pAID-associated gene transcripts as identified by 
GBAT was higher than that of the remaining transcripts in the data set using a 
one-sided Wilcoxon rank test or a one-sided Kolmogorov-Smirnov (KS) test, 
respectively. We calculated a tissue-specific gene expression ES value, which 
is the −log10 (P value) obtained from comparing the relative enrichment in 
transcript expression of pAID-associated genes versus the transcripts of the 
remaining genes in the data set. The tests were done on a per-tissue basis to 
derive a set of KS and a set of Wilcoxon ES values. We performed this per tissue 
analysis (1) for the total set of pAID-associated genes from GBAT and (2) when 
genes across the extended MHC (chr6: 25–34 Mb) were excluded.

We performed the secondary immune–versus–non-immune comparative 
analysis by plotting the ES values obtained from either Wilcoxon or KS tests 
in descending rank order of the respective test statistics, as shown in Figure 3a 
and Supplementary Figure 5 for all 126 tissue types. In those figures each point 
represents a single tissue and is colored according to its classification as either 
immune (red) or non-immune (blue), as described previously86. To formally 
test whether the overall ES values were higher among immune tissues than 
among non-immune tissues, we performed both the Wilcoxon rank sum test 
and the KS test on the vector of per-tissue ES values, comparing those derived 
from immune and non-immune tissues. We found that the enrichment observed 
across immune tissues was specific and not general to any GWAS-identified 
signals. We repeated this analysis in two sets of candidate genes, one for CD 
and another for schizophrenia, by identifying all associated genes for the two 
phenotypes from the NHGRI GWAS Catalog.

Immune cell gene set enrichment analysis. Cells of the immune system are 
extremely diverse in function and gene expression. To more precisely assess the 
expression of pAID-associated genes, we examined the mRNA expression of 
pAID candidate genes across specific immune cell subtypes, as well as during 
different developmental time points.

ImmGen provides a publicly available, high-quality murine gene expression 
data set. The ImmGen data set consists of 226 murine immune cell types across 
different lineages at multiple developmental stages, sorted by FACS and assayed 
at least in triplicate. Standard QC and quantile-normalization methods were 
applied to the data set as described by ImmGen102. The total set of transcripts 
mapped to 14,624 homologs in the human transcriptome on the basis of genes 
annotated in the hg18/build36 of the human reference genome, which were used 
to query the gene expression data.

Some of the cell types were derived from genetically altered animals, and the 
results from analysis of those cell types would have been difficult to interpret, 
so we removed those cell lines from the analysis. The complete list of cell types 
used in the analysis and the category to which we assigned each cell type for the 
categorical analysis are presented in Supplementary Table 8b

.

m
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A total of 176 

unique cell lines remained for subsequent analyses using this data set.
As with the human data set, we calculated the ES values by comparing 

the expression of the pAID-associated candidate gene transcripts to that of 
the remaining transcripts assayed in the data set for each immune cell type 
examined. We plotted the distribution of relative gene expression ES values as 
a density plot across the range of ES values from all of the examined cell types 
available. We compared the results obtained using the full set of candidate pAID 
genes identified by GBAT or obtained when we excluded the genes within the 
extended MHC. To ensure that this was not simply a result of selection bias 
(as GWASs may be biased toward regions or genes across the genome that are 
better sampled or more densely genotyped), we compared the results to those 
obtained with the curated gene lists from the GWAS catalog (as above) for CD, 
schizophrenia, body mass index and LDL cholesterol.

To determine whether pAID-associated candidate genes are expressed at 
higher levels (relative to the rest of the genes in the transcriptome) in some 
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immune cell types than in others, we defined immune cell types according to 
surface marker expression and tissue isolation details provided by ImmGen. 
Some categories were further divided into subcategories (for example, B and  
T cells) on the basis of developmental stage or lineage into a total of 16 non- 
overlapping cell-type categories. To compare the results across the cell-type 
categories, we plotted the distribution of ES value ranks for each cell type,  
binning the results according to the category each cell type belonged to (again, 
we performed the analysis either with or without the extended MHC region).

Expression profiling of pleiotropic autoimmune disease–associated genes 
across specific immune cell types. We profiled the expression of genes  
that had been identified in at least three autoimmune diseases in our subtype 
model search, previously published Immunochip fine-mapping studies, or a 
combination thereof (for example, identified as associated with JIA and UC in 
our analysis but previously identified as a candidate gene from an Immunochip 
analysis of AA).

.

m
 We identified 217 candidate pleiotropic genes, of which 191 

could be mapped to unique gene transcripts within the ImmGen data sets.
We performed agglomerative hierarchical clustering with the matrix of  

gene expression levels from the 191 candidate gene transcripts using Ward’s 
minimal-variance method across all 176 immune cell types. The genes and  
cell types shown in dendrograms are based on the results of unsupervised  
hierarchical clustering analysis and represent four major groups of cells and  
six major groups of genes.

We examined whether genes that were clustered on the basis of similar immune 
cell–expression profiles were likely to be associated with the same disease(s). 
Specifically, given a set of genes associated with one or more autoimmune diseases 
grouped in cluster i (Ci), we asked whether there is an increased likelihood (i.e., 
more so than expected by chance as compared with genes not found within this 
cluster) that these genes are also associated with disease j (Dj), such that

Ci (yes) Ci (no)
Dj (yes) a b
Dj (no) c d

where the expected probability of the values observed under the null is given 
by the hypergeometric distribution. As some of the cell counts were small 
and we were interested only in identifying instances where a >> b, c or d, we 
used a one-sided Fisher’s exact test. We first tested each of the 18 autoimmune  
diseases across all identified clusters, declaring nominal and Bonferonni-
adjusted significance at P < 0.05 and P < 5.6 × 10−4, respectively. For any clusters 
where at least two diseases reached nominal or marginal significance, we also 
tested whether there was an overrepresentation of genes associated with both 
diseases at P < 0.05.

PPI and network analysis. DAPPLE86: PPIs among the set of either 27 GWS or 
46 GWM candidate regions were identified; the input seeds were defined as the 
100-kB sequences up- and downstream of the most significantly associated SNP 
(based on hg19) in each candidate region. Other input parameters included 50-kB 
regulatory region length, a common interactor binding degree cutoff of 2, and the 
following specified known genes: IL23R, PTPN22, INS, NOD2, DAG1, SMAD3, 
ATG16L1, ZNF365, PTGER4, NKX2-3, ANKRD55 and IL12B. We performed 
10,000 permutations to accurately calculate enrichment network statistics. Seed 
scores Pdapple were used to color the protein nodes in the network plot.

STRING105: We used the Homo sapiens PPI database to query one of  
three lists: (1) the GWS loci, (2) GWS and GWM loci or (3) the list of genes 
identified by GBAT shown to be enriched for key proteins in the JAK-STAT 
pathway. We assessed and reported the evidence of PPI enrichment on the 
basis of these queries as compared to the results expected for the rest of the 
genes in the human genome. We generated network plots for the directly 
connected protein candidates (the Supplementary Figures represent the 
“evidence” plot option).

Pathway and gene set enrichment analysis. Webgestalt107: For pathway and 
gene set analysis, we used the web-based tool Webgestalt to examine evidence 
of shared TF binding, miRNA target–binding sites, and enrichment in specific 
Gene Ontology and Pathway Commons categories. The inputs for this analysis 
included all lead genes (FDR < 2%) from the GBAT (similar to that for the other 
pathway annotation databases below for consistency).

Q22Q22

DAVID110: We used the bioinformatics web tool DAVID (v6.7, available  
at http://david.abcc.ncifcrf.gov) 

.

m
for functional-annotation analysis of the  

significant genes. Significant genes with FDR < 2% in VEGAS, the gene- 
based association analysis, were used as input for DAVID. DAVID performed 
overrepresentation analysis of functional-annotation terms on the basis of  
hypergeometric testing and adjusted for multiple testing. To compare the results 
of this analysis with results obtained via other methods, we used BioCarta, 
KEGG pathways and GO_BP_FAT as gene set definition files.

IPA109: We used IPA software (http://www.ingenuity.com/) for canonical 
pathway and network analysis. We inputted all the significant genes in the 
VEGAS output (FDR < 2%) for IPA analysis. In the IPA core analysis, we selected 
the Ingenuity Knowledge Base (Genes Only) as the reference set, including both 
direct and indirect relationships. We used the filter setting of relationships in 
human and experimentally observed only. Information regarding canonical 
pathways was obtained from IPA output.

GSEA115,116: We conducted gene set enrichment analysis with the software 
GSEA (http://www.broadinstitute.org/gsea) using as input the pre-ranked gene 
list generated on the basis of the −log(P value) from VEGAS using all genes. We 
selected the following settings for our analysis: number of permutations, 5,000; 
enrichment statistic, weighted; maximum size of gene set, 500; minimum size 
of gene set, 15; and with normalization.

Interdisease genetic sharing analysis. To examine the degree of overlap in 
genetic risk susceptibility between any two autoimmune diseases, we developed 
and/or implemented the following statistical measures to quantify interdisease 
genetic sharing:

1.  LPS test, optimized to evaluate whether two pAIDs share more loci in 
common than would be expected to occur by chance; the score ‘penalizes’ 
disease pairs if many of the loci are disease specific. The test is helpful if 
only data on whether diseases share specific candidate genes or association 
loci in common are known.

2.  GPS test, optimized to assess the correlation between the set of associa-
tion test statistics observed genome-wide across any two pAIDs. This test 
is valuable because it is independent of the gene sets chosen and thus 
does not require the use of any arbitrary method to define a significance 
‘threshold’ of input data.

LPS analysis. To quantify the similarity between any two diseases D1 and D2 on 
the basis of the degree to which D1 and D2 share independent genetic risk associa-
tions (i.e., loci, SNPs or candidate genes), we considered the following model.

We began with a list of candidate genes, association loci or LD-independent 
SNPs nr identified as having reached a predefined GWAS significance threshold 
(e.g., GWS or GWM) across one or more SNPs from nr for a set of diseases with 
expected or hypothesized sharing (i.e., all autoimmune diseases in this study and 
those reported on by the Immunochip studies catalogued by ImmunoBase83).

For any two diseases D1 and D2, a given candidate gene or SNP xi could be 
uniquely classified in one of four ways: associated with D1 and D2 (n11), associ-
ated only with D1 (n12) or D2 (n21), or associated with neither D1 nor D2 (n22). 
For any given list of TOP associations (i.e., nr), the distribution across the four 
possible categories can be tabulated as follows:

Locus xi D2 (yes) D2 (no)
D1 (yes) n11 n12
D1 (no) n21 n22

where n11 + n12 + n21 + n22 = nr and D1 (yes) or (no) means the SNP xi is or is 
not associated with that marker, respectively.

The probability Px that an SNP xi from the list nr is associated with either D1 
or D2 can be expressed as

P
n n

n
D

P
n n

n
D

r

r

1
11 12

1

2
12 21

2

(for )

(for )

for any two pAIDs D1 and D2.
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Thus, the frequency at which xi should truly be associated with two distinct 
disease subtypes is given by nr(P1P2), and the observed number of overlapping 
associations is represented by n11. Therefore, under the null hypothesis H0, for 
a given pair of diseases D1 and D2, the variance of the difference between the 
numbers of expected and observed associations of all those tested (nT) shared 
by both D1 and D2 should follow a normal distribution.

Z n n P P
n P P P P

Nr
r
11 1 2
1 2 1 21

0 1( )
( )( )

( , )

We used the one-sided Z-test to examine whether the degree of overlap was 
significantly greater than expected, assuming a normal distribution under  
the null hypothesis that D1 and D2 do not share more associations than they 
would by chance. We used a Bonferroni adjustment to correct for 45 pairwise 
disease-combination tests.

GPS analysis. The GPS test determines whether two pAIDs are genetically 
related. For the ith SNP, let Xi = 1 if the SNP is truly associated with one disease, 
and let Xi = 0 otherwise. Similarly, define Yi as the indicator of whether the 
SNP is associated with the other disease in the pair. We can therefore consider 
the diseases to be genetically related if there are more SNPs with (Xi,Yi) = (1,1)  
than would be expected to occur by chance. This amounts to testing the  
independence of Xi and Yi.

However, we do not directly observe Xi and Yi and instead observe P values 
Ui and Vi, which come from the two GWAS studies for the two diseases. When 
Xi = 1, the P value Ui will tend to be small, and otherwise Ui will be uniformly 
distributed; the same is true of Yi and Vi. If Ui and Vi are independent, then Xi 
and Yi must be as well. We can therefore test for genetic relatedness by testing 
whether the P values are dependent.

Most existing methods may not take advantage of the availability of the full 
genome data set for testing genetic sharing using Ui and Vi. To address this 
limitation, we developed a novel, threshold-free method to detect genetic relat-
edness. Our test statistic is defined by

D n
n

F u v F u v

F u F v F u F vu v

uv u v

u v u v
sup

ln
( , ) ( )F ( )

( ) ( ) ( ) ( ), 2 2

where n is the total number of SNPs, F u vuv ( , )  is the empirical bivariate distri-
bution function of (Ui,Vi), and F uu( )  and F vv ( )  are the empirical univariate 
distribution functions of Ui and Vi, respectively. Intuitively, the numerator of D 
is motivated by the fact that if Ui and Vi are truly independent, their bivariate 
distribution is equal to the product of their univariate distributions. The denomi-
nator of D makes the test capable of detecting even very weak correlations. It 
can be shown that D is asymptotically optimal for testing for genetic related-
ness. Under the null hypothesis of no genetic sharing, it can be shown that D is 
approximately distributed like the inverse square root of a standard exponential 
random variable. This gives us an analytic expression for calculating P values. 
Note that no significance threshold is required.

The asymptotic null distribution of D is derived under the assumption that 
the genetic markers examined across the genome are statistically independent. 
We therefore pruned the SNPs for each pair of diseases before applying our 
test. We conducted inverse 2 meta-analyses separately for each pair of diseases 
and pruned the resulting P values using a threshold of r2 < 0.5 within a 500-kB 
up- and downstream region. This left about 800,000 SNPs for each disease pair 
analyzed. The use of more stringent r2 thresholds (for example, r2 < 0.3 or 0.2) 
gave comparable results.

Because the GPS test has the underlying assumption that the genetic markers 
examined across the genome are statistically independent, we applied the test 
to independent P values for every pairwise pAID combination examined using 
a threshold of r2 < 0.5 within a 500-kB up- and downstream region. This left 
about 800,000 SNPs for each disease pair analyzed. Note that we observed similar 
results when we used either the full genome-wide data set or a reduced marker 
set with more stringent r2 thresholds (for example, r2 < 0.3 or 0.2).

Undirected weighted cyclic network visualization of results from the locus- 
specific sharing test. In graphic representations, pairwise relationships  
between autoimmune diseases (nodes) are represented by edges, whose 

weights are determined by the magnitude of the LPS test statistic (R statistical  
software package q-graph). Specifically, the width and density of the edges are 
the standardized transformations of the test statistic, and the colors denote 
whether the direction of the test statistic is positive (blue, meaning more sharing  
than expected) or negative (red, meaning less sharing than expected). Although 
graphs are constructed from all 45 pairwise interactions, for simplicity  
and improved visualization, we showed only those edges that represented a pair-
wise interaction that reached a Bonferroni-adjusted (Supplementary Fig. 6b)  
or nominal (Supplementary Fig. 7) significance threshold (P < 0.05). The  
nodes are positioned on the basis of a force-directed layout based on the 
Fruchterman-Reingold algorithm.

In silico replication of novel pAID-association loci using previously published 
autoimmune disease cohort data sets. Replication set I: The following data sets 
were used in the first replication set (Table 1): CASP117, CIDR Celiac Disease118, 
NIDDK Crohn’s Disease119, Wellcome Trust Case Control Consortium 
(WT) Crohn’s Disease and Type 1 Diabetes120, WT Ulcerative Colitis121 and 
WT Ankylosing Spondylitis122. These data sets were obtained via dbGaP 
or the Wellcome Trust Case Control Consortium. In order to maximize the  
power, we tried to replicate each of the 12 significant SNPs in all of the seven 
available data sets.

Each data set was subjected to strict QC filtering as follows: we removed 
individuals that were inferred to be related on the basis of genetic data,  
individuals with >10% missing data, individuals with a reported sex that  
did not match the observed heterozygosity rates on chromosome X, and  
individuals not of European ancestry. We further removed variants with >10% 
missingness, variants not in HWE, variants with missingness significantly cor-
related to phenotype, and variants with MAF < 0.005. Variants to be replicated  
that were not observed in the original data set were imputed using IMPUTE2 
(ref. 123) and the 1KGP-RP haplotype data124. Markers across the X chro-
mosome, which were previously considered by most of these studies, were  
reanalyzed using the XWAS toolset125,126.

Replication-association analysis was carried out by logistic regression  
implemented in PLINK127. The first ten principal components calculated  
using EIGENSOFT128 were added as covariates for all data sets except CASP, 
where no population stratification was observed.

Replication set II: The second replication set consisted of the following  
data sets: Rheumatoid Arthritis meta-analysis129, IBDG Ulcerative Colitis 
meta-analysis130, IBDG Crohn’s Disease meta-analysis131, Systemic Lupus 
Erythematosus GWAS132, and SLEGEN133. Individuals from these data sets 
were of European ancestry. Summary statistics from the original studies  
were publicly available and were used for the replication analysis. Details  
regarding QC procedures and association analysis can be obtained from the 
original studies129–133.

LD-based replication for replication sets I and II: We further assessed  
replication in SNPs that were in LD with the significant SNPs in the discovery 
set. For each associated SNP, a list of SNPs in LD (r2 > 0.5) within 500 kb of the 
original SNP was obtained from SNAP87 using the 1KGP-RP.
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