48 research outputs found

    Consequences of various landscape-scale ecosystem management strategies and fire cycles on age-class structure and harvest in boreal forests

    Get PDF
    At the landscape scale, one of the key indicators of sustainable forest management is the age-class distribution of stands, since it provides a coarse synopsis of habitat potential, structural complexity, and stand volume, and it is directly modified by timber extraction and wildfire. To explore the consequences of several landscape-scale boreal forest management strategies on age-class structure in the Mauricie region of Quebec, we used spatially explicit simulation modelling. Our study investigated three different harvesting strategies (the one currently practiced and two different strategies to maintain late seral stands) and interactions between fire and harvesting on stand age-class distribution. We found that the legacy of initial forested age structure and its spatial configuration can pose short- (<50 years) to medium-term (150-300 years) challenges to balancing wood supply and ecological objectives. Also, ongoing disturbance by fire, even at relatively long cycles in relation to historic levels, can further constrain the achievement of both timber and biodiversity goals. For example, when fire was combined with management, harvest shortfalls occurred in all scenarios with a fire cycle of 100 years and most scenarios with a fire cycle of 150 years. Even a fire cycle of 500 years led to a reduction in older forest when its maintenance was not a primary constraint. Our results highlight the need to consider the broad-scale effects of natural disturbance when developing ecosystem management policies and the importance of prioritizing objectives when planning for multiple resource use

    Development of a blood-based gene expression algorithm for assessment of obstructive coronary artery disease in non-diabetic patients

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Alterations in gene expression in peripheral blood cells have been shown to be sensitive to the presence and extent of coronary artery disease (CAD). A non-invasive blood test that could reliably assess obstructive CAD likelihood would have diagnostic utility.</p> <p>Results</p> <p>Microarray analysis of RNA samples from a 195 patient Duke CATHGEN registry case:control cohort yielded 2,438 genes with significant CAD association (p < 0.05), and identified the clinical/demographic factors with the largest effects on gene expression as age, sex, and diabetic status. RT-PCR analysis of 88 CAD classifier genes confirmed that diabetic status was the largest clinical factor affecting CAD associated gene expression changes. A second microarray cohort analysis limited to non-diabetics from the multi-center PREDICT study (198 patients; 99 case: control pairs matched for age and sex) evaluated gene expression, clinical, and cell population predictors of CAD and yielded 5,935 CAD genes (p < 0.05) with an intersection of 655 genes with the CATHGEN results. Biological pathway (gene ontology and literature) and statistical analyses (hierarchical clustering and logistic regression) were used in combination to select 113 genes for RT-PCR analysis including CAD classifiers, cell-type specific markers, and normalization genes.</p> <p>RT-PCR analysis of these 113 genes in a PREDICT cohort of 640 non-diabetic subject samples was used for algorithm development. Gene expression correlations identified clusters of CAD classifier genes which were reduced to meta-genes using LASSO. The final classifier for assessment of obstructive CAD was derived by Ridge Regression and contained sex-specific age functions and 6 meta-gene terms, comprising 23 genes. This algorithm showed a cross-validated estimated AUC = 0.77 (95% CI 0.73-0.81) in ROC analysis.</p> <p>Conclusions</p> <p>We have developed a whole blood classifier based on gene expression, age and sex for the assessment of obstructive CAD in non-diabetic patients from a combination of microarray and RT-PCR data derived from studies of patients clinically indicated for invasive angiography.</p> <p>Clinical trial registration information</p> <p>PREDICT, Personalized Risk Evaluation and Diagnosis in the Coronary Tree, <url>http://www.clinicaltrials.gov</url>, <a href="http://www.clinicaltrials.gov/ct2/show/NCT00500617">NCT00500617</a></p

    Post-Transcriptional Regulation of Cadherin-11 Expression by GSK-3 and β-Catenin in Prostate and Breast Cancer Cells

    Get PDF
    The cell-cell adhesion molecule cadherin-11 is important in embryogenesis and bone morphogenesis, invasion of cancer cells, lymphangiogenesis, homing of cancer cells to bone, and rheumatoid arthritis. However, very little is known about the regulation of cadherin-11 expression.Here we show that cell density and GSK-3beta regulate cadherin-11 levels in cancer cells. Inactivation of GSK3beta with lithium chloride or the GSK3 inhibitor BIO and GSK3beta knockdown with siRNA repressed cadherin-11 mRNA and protein levels. RNA Polymerase II chromatin immunoprecipitation experiments showed that inhibition of GSK3 does not affect cadherin-11 gene transcription. Although the cadherin-11 3'UTR contains putative microRNA target sites and is regulated by Dicer, its stability is not regulated by GSK3 inhibition or density. Our data show that GSK3beta regulates cadherin-11 expression in two ways: first a beta-catenin-independent regulation of cadherin-11 steady state mRNA levels, and second a beta-catenin-dependent effect on cadherin-11 3'UTR stability and protein translation.Cadherin-11 mRNA and protein levels are regulated by the activity of GSK3beta and a significant degree of this regulation is exerted by the GSK3 target, beta-catenin, at the level of the cadherin-11 3'UTR

    A subset of platinum-containing chemotherapeutic agents kills cells by inducing ribosome biogenesis stress

    Get PDF
    Cisplatin and its platinum analogs, carboplatin and oxaliplatin, are some of the most widely used cancer chemotherapeutics. Although cisplatin and carboplatin are used primarily in germ cell, breast and lung malignancies, oxaliplatin is instead used almost exclusively to treat colorectal and other gastrointestinal cancers. Here we utilize a unique, multi-platform genetic approach to study the mechanism of action of these clinically established platinum anti-cancer agents, as well as more recently developed cisplatin analogs. We show that oxaliplatin, unlike cisplatin and carboplatin, does not kill cells through the DNA-damage response. Rather, oxaliplatin kills cells by inducing ribosome biogenesis stress. This difference in drug mechanism explains the distinct clinical implementation of oxaliplatin relative to cisplatin, and it might enable mechanistically informed selection of distinct platinum drugs for distinct malignancies. These data highlight the functional diversity of core components of front-line cancer therapy and the potential benefits of applying a mechanism-based rationale to the use of our current arsenal of anti-cancer drugs

    Comparative Analysis of mRNA Isoform Expression in Cardiac Hypertrophy and Development Reveals Multiple Post-Transcriptional Regulatory Modules

    Get PDF
    Cardiac hypertrophy is enlargement of the heart in response to physiological or pathological stimuli, chiefly involving growth of myocytes in size rather than in number. Previous studies have shown that the expression pattern of a group of genes in hypertrophied heart induced by pressure overload resembles that at the embryonic stage of heart development, a phenomenon known as activation of the “fetal gene program”. Here, using a genome-wide approach we systematically defined genes and pathways regulated in short- and long-term cardiac hypertrophy conditions using mice with transverse aortic constriction (TAC), and compared them with those regulated at different stages of embryonic and postnatal development. In addition, exon-level analysis revealed widespread mRNA isoform changes during cardiac hypertrophy resulting from alternative usage of terminal or internal exons, some of which are also developmentally regulated and may be attributable to decreased expression of Fox-1 protein in cardiac hypertrophy. Genes with functions in certain pathways, such as cell adhesion and cell morphology, are more likely to be regulated by alternative splicing. Moreover, we found 3′UTRs of mRNAs were generally shortened through alternative cleavage and polyadenylation in hypertrophy, and microRNA target genes were generally de-repressed, suggesting coordinated mechanisms to increase mRNA stability and protein production during hypertrophy. Taken together, our results comprehensively delineated gene and mRNA isoform regulation events in cardiac hypertrophy and revealed their relations to those in development, and suggested that modulation of mRNA isoform expression plays an importance role in heart remodeling under pressure overload

    Design and baseline characteristics of the finerenone in reducing cardiovascular mortality and morbidity in diabetic kidney disease trial

    Get PDF
    Background: Among people with diabetes, those with kidney disease have exceptionally high rates of cardiovascular (CV) morbidity and mortality and progression of their underlying kidney disease. Finerenone is a novel, nonsteroidal, selective mineralocorticoid receptor antagonist that has shown to reduce albuminuria in type 2 diabetes (T2D) patients with chronic kidney disease (CKD) while revealing only a low risk of hyperkalemia. However, the effect of finerenone on CV and renal outcomes has not yet been investigated in long-term trials. Patients and Methods: The Finerenone in Reducing CV Mortality and Morbidity in Diabetic Kidney Disease (FIGARO-DKD) trial aims to assess the efficacy and safety of finerenone compared to placebo at reducing clinically important CV and renal outcomes in T2D patients with CKD. FIGARO-DKD is a randomized, double-blind, placebo-controlled, parallel-group, event-driven trial running in 47 countries with an expected duration of approximately 6 years. FIGARO-DKD randomized 7,437 patients with an estimated glomerular filtration rate >= 25 mL/min/1.73 m(2) and albuminuria (urinary albumin-to-creatinine ratio >= 30 to <= 5,000 mg/g). The study has at least 90% power to detect a 20% reduction in the risk of the primary outcome (overall two-sided significance level alpha = 0.05), the composite of time to first occurrence of CV death, nonfatal myocardial infarction, nonfatal stroke, or hospitalization for heart failure. Conclusions: FIGARO-DKD will determine whether an optimally treated cohort of T2D patients with CKD at high risk of CV and renal events will experience cardiorenal benefits with the addition of finerenone to their treatment regimen. Trial Registration: EudraCT number: 2015-000950-39; ClinicalTrials.gov identifier: NCT02545049

    Influences of Kalmia angustifolia on black spruce in eastern Canada's boreal forest

    No full text
    The cover of the ericaceous shrub Kalmia angustifolia L. (sheep's laurel or lamb's kill) expands rapidly on many clear-cut sites through central Newfoundland and northern Quebec. Previous laboratory and greenhouse studies on the effect of Kalmia on black spruce (Picea mariana (Mill.) B.S.P.) germinants and seedlings have demonstrated that extracts of Kalmia leaves and soil can reduce the germination rate and early root and shoot growth of black spruce. Observations in the field have suggested that Kalmia leaves and soil can reduce the germination rate and early rot and shoot growth of black spruce. Observations in the field have suggested that Kalmia reduces the growth of planted spruce seedlings. The experiments presented in this thesis were designed to determine the importance of Kalmia in controlling spruce growth and nutrition, and to document how the importance of Kalmia varies from site to site. Spruce seedlings growing in close proximity to Kalmia were found to be shorter and had lower foliar concentrations of N and P, and the roots of these seedlings had lower rates of mycorrhization and a more frequent occurrence of the pseudo-mycorrhizal/pathogenic fungus Phialocephala dimorphospora Kendrick. Results suggest that Kalmia impedes the N nutrition of spruce seedlings through the reduction of N mineralization rates and N availability. The results of path analysis further suggest that Kalmia had a direct effect on both spruce foliar N concentration and spruce growth. These findings do not demonstrate, though they are consistent with the suggestion, that Kalmia can affect spruce through allelopathic processes. Although we could not demonstrate that the reduction of rates of mycorrhization were due to indirect effects of Kalmia on spruce nutrition, we demonstrated that improving spruce nutrition in close proximity to Kalmia increased, though not significantly, the occurrence of mycorrhizae on spruce roots. Mycorrhizal symbiosis was shown to play a key role in

    Social Cognition, the Male Brain and the Autism Spectrum

    Get PDF
    Behavioral studies have shown that, at a population level, women perform better on tests of social cognition and empathy than men. Furthermore Autism Spectrum Disorders (ASDs), which are characterized by impairments in social functioning and empathy, occur more commonly in males than females. These findings have led to the hypothesis that differences in the functioning of the social brain between males and females contribute to the greater vulnerability of males to ASD and the suggestion that ASD may represent an extreme form of the male brain. Here we sought to investigate this hypothesis by determining: (i) whether males and females differ in social brain function, and (ii) whether any sex differences in social brain function are exaggerated in individuals with ASD. Using fMRI we show that males and females differ markedly in social brain function when making social decisions from faces (compared to simple sex judgements) especially when making decisions of an affective nature, with the greatest sex differences in social brain activation being in the inferior frontal cortex (IFC). We also demonstrate that this difference is exaggerated in individuals with ASD, who show an extreme male pattern of IFC function. These results show that males and females differ significantly in social brain function and support the view that sex differences in the social brain contribute to the greater vulnerability of males to ASDs.Publisher PDFPeer reviewe
    corecore