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Abstract

Cisplatin and its platinum analogues, carboplatin and oxaliplatin, are some of the most widely 

used cancer chemotherapeutics. However, although cisplatin and carboplatin are primarily used in 

germ cell, breast and lung malignancies, oxaliplatin is instead used almost exclusively in 

colorectal and other gastrointestinal cancers. Here, we utilize a unique multi-platform genetic 

approach to study the mechanism of action of these clinically established platinum anti-cancer 

agents as well as more recently developed cisplatin analogues. We show that oxaliplatin, unlike 

cisplatin and carboplatin, does not kill cells via the DNA damage response. Rather, oxaliplatin 

kills cells by inducing ribosome biogenesis stress. This difference in drug mechanism explains the 

distinct clinical implementation of oxaliplatin relative to cisplatin and may enable mechanistically 

informed selection of distinct platinum drugs for distinct malignancies. These data highlight the 

functional diversity of core components of front line cancer therapy and the potential benefits of 

applying a mechanism-based rationale to the use of our current arsenal of anti-cancer drugs.
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The use of cisplatin in the clinic began over 45 years ago in the absence of understanding of 

the cellular and molecular mechanisms that underlie its efficacy1. Despite this, cisplatin has 

become a component of treatment regimens for at least 18 distinct tumor types2. However, 

cisplatin-induced side effects and the emergence of resistance to treatment led to the 

development of two derivatives, carboplatin and oxaliplatin, which have also seen 

considerable clinical use in a wide array of cancers. Interestingly, oxaliplatin has a different 

side effect profile than cisplatin and carboplatin, and it is used in colorectal and other 

gastrointestinal cancers where cisplatin and carboplatin have minimal efficacy. However, the 

decision to use oxaliplatin to treat colorectal cancer was primarily motivated by its activity 

against colorectal cancer cell lines in the human tumor cell line panel known as the NCI-60 

and not due to a rationale involving its mechanism of action3,4. Although the assumption has 

been that oxaliplatin, like cisplatin, kills cells by eliciting a DNA damage response, no 

satisfactory explanation for oxaliplatin’s unique clinical use and side effect profile has been 

identified. Here, we demonstrate that oxaliplatin acts through a fundamentally distinct 

mechanism of action relative to cisplatin and we propose that these agents should be used in 

a mechanism-targeted manner in the treatment of cancer.

Results

Diverse mechanisms of action for platinum compounds

To examine the mechanism of action of cisplatin and its platinum analogues we used an 

RNAi-based functional genetic strategy to predict mechanism of cytotoxic drug action5–7. 

This methodology has the advantages of being mammalian, isogenic and unbiased by dosage 

effects resulting from export or metabolism. Additionally, it has previously been used to 

characterize the mechanism of action of other metal based anti-cancer agents8–15. It is based 

on a fluorescence competition assay using lymphoma cells that are partially infected with 

eight short hairpin RNAs (shRNAs) that target distinct genes encoding proteins with known 

or putative roles in cell death signaling pathways: p53 (TP53), Chk2 (CHEK2), Chk1 

(CHEK1), ATR (ATR), ATX (SMG1), DNAPKcs (PRKDC), Bok (BOK) and Bim 

(BCL2L11). The shRNA-bearing cells either enrich or deplete relative to the uninfected 

population based on the survival advantage or disadvantage conferred by a given shRNA 

(Fig. 1a). The combined responses of these cells to different drugs constitute drug 

“signatures”. Signatures of all classes of clinically used cytotoxic agents have been 

generated and assembled into a reference set separated into eight distinct categories of drugs 

based on the constituents’ shared molecular mechanism of action (Supplementary Table S1). 

A new drug signature can then be classified by a probabilistic K-nearest neighbors algorithm 

to determine whether a new drug belongs to a class in the reference set or requires a new 

category not represented therein (Fig. 1b).

To eliminate dosage or potency effects from confounding the RNAi signatures, all agents 

were administered at a concentration that killed 80–90% (LD80–90) of the cells at 48 h. 

These LD80–90 concentrations varied greatly from one compound to the next 

(Supplementary Fig. 1a). However, via atomic absorption spectroscopy we determined that 

for cisplatin analogues representing low, medium and high potency, the amount of platinum 

required inside the cells for killing corresponded to their respective LD80–90 values 
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(Supplementary Fig. 1b). For instance, pyriplatin treatment at LD80–90 lead to much more 

intracellular platinum than the other LD80–90 treatment, indicating each molecule is 

relatively less toxic. Thus, differences in cellular uptake were effectively controlled using 

LD80–90 concentrations.

Next, to examine the mechanism of action of cisplatin, carboplatin and oxaliplatin we 

obtained their RNAi signatures. As expected, cisplatin and carboplatin were both predicted 

to be DNA cross-linkers (Fig. 1c,d, Supplementary Table S2, and Supplementary Fig. S2a). 

Previously, the three FDA-approved platinum based drugs had been understood to function 

primarily as DNA damaging agents that form intra- and interstrand cross-links. These cross-

links are, in turn, removed largely by excision repair, generating single or double-stranded 

breaks in the process16. However, despite the fact that oxaliplatin putatively forms 1,2-

intrastrand and other cross-links on DNA, oxaliplatin classified as being most similar to 

compounds that inhibit transcription or translation (Fig. 1c,d, Supplementary Table S2, and 

Supplementary Fig. S2a). These data may begin to explain why oxaliplatin has a different 

cytotoxicity profile and clinical application. Additionally, RNAi signatures of cisplatin and 

oxaliplatin taken in combination with 5-fluorouracil (5-FU), the primary drug with which 

oxaliplatin is paired with, preserved these mechanistic differences (Supplementary Fig. 3). 

Prior analysis of NCI-60 data similarly concluded that oxaliplatin acts distinctly relative to 

cisplatin and carboplatin, although no cellular function was identified as being responsible 

for the difference17. Notably, in this prior study, compounds clustered strictly by structure 

which is indicative of the NCI-60 methodology’s emphasis on drug metabolism and 

transport over mechanism of action18.

Interestingly, phenanthriplatin, a monofunctional and highly potent platinum(II) compound, 

also classified as a transcription/translation inhibitor (Fig. 1c,d, Supplementary Table S2, 

and Supplementary Fig. S2c). Because phenanthriplatin is incapable of making DNA cross-

links, yet also classifies as a transcription/translation inhibitor like oxaliplatin, it suggests 

that the ability of oxaliplatin to form cross-links on the DNA is irrelevant to its mechanism 

of action. We went on to characterize seven additional platinum compounds and discovered 

that most also classified as DNA cross-linkers or transcription/translation inhibitors 

(Supplementary Fig. S2b,c and Supplementary Table S2). Curiously, two monofunctional 

platinum agents, acriplatin and pyriplatin, were found to have mechanisms of action not 

represented in our reference set (Supplementary Fig. S2d and Supplementary Table S2). This 

suggests that potential mechanisms of action for platinum compounds extend beyond the 

scope of anti-cancer agents in current clinical use. Furthermore, these signature predictions 

are maintained in all permutations of leave-one-out cross-validation of the drugs in the 

reference set (Supplementary Table S3). Additionally, we used an indicator of structural 

similarity, the Tanimoto coefficient19, to hierarchically cluster the compounds and found that 

structural clustering was unable to recapitulate RNAi signature-based clustering, regardless 

of whether the compounds were clustered by their native structure or their anticipated 

structure once inside the cell (Supplementary Fig. S4). Thus, mechanism cannot be correctly 

predicted based on structure alone.

To more thoroughly examine the differences in RNAi signatures used to classify these 

molecules, we performed a detailed analysis of all of their signatures. The most notable 
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differences included decreased resistance with shChk2 and decreased sensitivity with 

shChk1 for the transcription/translation inhibitor-like compounds relative to the DNA cross-

linker-like compounds (Fig. 1e and Supplementary Table 4). As another means of 

visualizing the data, we utilized principal components analysis (PCA) to represent the 

variance of our data in fewer dimensions. Plotting all of our tested platinum analogues with 

canonical transcription/translation inhibitors, DNA cross-linking agents, and Top2 poisons, 

we saw that the transcription/translation inhibitors separated from DNA cross-linkers along 

the first principal component (PC1) (Fig. 1e). Upon examining the variable contributions 

that made up PC1, we saw that shChk2 contributed most strongly among the hairpins. We 

also identified Chk2 as the greatest contributor to the distinction between these two sets of 

drugs in a p185+ BCR-Abl p19arf−/− mouse model of acute lymphoblastic leukemia (ALL)20 

(Supplementary Fig. S2e,f).

DNA damage response affects response to cisplatin but not oxaliplatin

To confirm the RNAi signature data using a parallel approach, we examined drug response 

in the avian DT40 cell line21. Here, 40 different DT40 cell lines, each with a different gene 

knockout related to DNA damage repair and tolerance, were dosed with five different 

platinum agents. In agreement with our RNAi signatures, the DT40 knockouts showed 

distinct sensitivities to oxaliplatin and phenanthriplatin relative to the other three platinum 

agents (Fig. 2a,b, and Supplementary Tables S5–6). In particular, loss of genes involved in 

homologous recombination (HR) (XRCC2, XRCC3, BRCA2) and interstrand cross-link 

repair (ICR) (FANCC, FANCD2, FANCG) showed the greatest differences between the two 

categories of platinum agents. The relative lack of sensitivity of HR and ICR deficient cells 

to oxaliplatin suggests that it, like phenanthriplatin, fails to form intra- and interstrand cross-

links. Interestingly, genes necessary for replication bypass (POLZ and PCNA) were critical 

for all of the platinum derivatives. This result suggests that oxaliplatin and phenanthriplatin 

treatment create lesions on the DNA that are only toxic in the absence of normal replication 

bypass machinery. In addition, these results were recapitulated using RNAi against several 

genes related to DNA damage repair and/or tolerance in Eμ-Myc p19Arf−/− lymphoma cells 

and in Eμ-Myc p53−/− lymphoma cells (Supplementary Fig. S5a,b). Thus, relative drug 

sensitivities in the context of DT40 knockout cells support the RNAi-based category 

classifications.

Dependency on checkpoint kinases stratifies platinum agents

Given the importance of the two cell cycle checkpoint kinases, Chk1 and Chk2, in 

discriminating between the two mechanistic classes of platinum drug action and DNA 

damage response signaling, we decided to first confirm that these distinctions are relevant in 
vivo. To do this, we conducted a cell competition experiment using the Eμ-Myc p19Arf−/− 

lymphoma cells that were partially infected with GFP-tagged shChk2 and then tail-vein 

injected into syngeneic recipient mice. Tumors from untreated, cisplatin, oxaliplatin or 

phenanthriplatin treated mice were then analyzed for GFP percentage. As the in vitro data 

predicted, shChk2-containing cells significantly enriched compared to uninfected cells in 

mice treated with cisplatin but not in mice treated with oxaliplatin or phenanthriplatin (Fig. 

3a). These results suggest that dependence on Chk2 activity, a key mediator of the canonical 
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DNA damage response, represents a primary distinction between the mechanistic 

classifications of DNA cross-linkers and transcription/translation inhibitors.

Subsequently, we examined the cell cycle profiles of cells treated with phenanthriplatin, 

oxaliplatin, and cisplatin treatment for 12 h at LD80–90. Oxaliplatin and phenanthriplatin 

induced a G1 cell cycle arrest whereas cisplatin arrested cells in the S and G2/M phases 

(Fig. 3b). We obtained similar results with the three drugs after 24 h of treatment in human 

lung adenocarcinoma and colorectal cell lines, A549 and LoVo, respectively (Supplementary 

Fig. S6). To determine the mechanistic basis for these cell cycle differences, we examined 

signaling pathways that may be engaged following induction of the DNA damage response. 

As shown by western blot, p21 (CDKN1A) protein is activated more quickly in response to 

oxaliplatin and phenanthriplatin than cisplatin (Supplementary Fig. S7a). Additionally, 

knockdown of p21 sensitizes cells to oxaliplatin and phenanthriplatin treatment but elicits 

resistance to cisplatin (Supplementary Fig. S7b).

Next, to gain further insight into DNA damage signaling in response to these compounds, 

we examined the p53 activating kinase, Chk2. Chk2 is activated in response to double-strand 

breaks, whereby it goes on to phosphorylate p53 on serine 20 (serine 18 in mice), which 

relieves MDM2 inhibition of p5322. Thus, treatment of cells with DNA damaging agents 

selects for cells harboring Chk2 or p53 hairpins. Consequently, mechanistic characteristics 

of DNA cross-linking agents should be discernible by examining canonical markers of DNA 

damage. We therefore tested for γ-H2AX and phosphor-ser18 p53 by Western blot at 12 h 

with and without hairpins targeting Chk1 and Chk2 for cisplatin, oxaliplatin and 

phenanthriplatin. We observed that treatment with oxaliplatin and phenanthriplatin resulted 

in γ-H2AX signal, but this was not dependent on Chk2, as it was for cisplatin (Fig. 3c). All 

three drugs also elicited total p53 induction and phosphorylation of p53; however, this was 

dependent on Chk2 for cisplatin (Fig. 3d). Additionally, the same was observed for both γ-

H2AX and p53 at 4 h comparing cisplatin and phenanthriplatin with and without shChk2 

(Supplementary Fig. S8a,b). Moreover, we observed upregulation of p53 transcriptional 

targets Puma and Noxa following phenanthriplatin treatment, concomitant with the increase 

in p53 levels seen by western blot (Fig. 3e). Subsequently, we examined γ-H2AX and 

phospho-ser18 p53 at and prior to 4 h. Phenanthriplatin, and to a lesser degree oxaliplatin, 

induced γ-H2AX, phosphor-ser18 p53 and total p53 accumulation, sooner and to a greater 

degree than cisplatin (Supplementary Fig. S8c,d). Phenanthriplatin and oxaliplatin also 

caused more rapid cell death than cisplatin and doxorubicin (Supplementary Fig. S9). We 

confirmed that cisplatin-induced phosphorylation of serine 20 of p53 was Chk2 dependent in 

the human LoVo colorectal cell line (Supplementary Fig. S10a). Furthermore, the transcript 

levels of the pro-apoptotic gene, Noxa, were increased following treatment with all platinum 

agents tested in multiple human cell lines (Supplementary Fig. S10c–e). Taken together, the 

early activation of apoptosis along with the early appearance, persistence, and Chk2 

independence of γ-H2AX and phospho-ser18 p53 suggest a mechanism of cell death 

induced by oxaliplatin and phenanthriplatin that does not rely on canonical DNA strand-

break signaling.
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Oxaliplatin does not induce a DNA damage response

Considering the aforementioned rapid induction of γ-H2AX signal and early apoptosis 

following oxaliplatin and phenanthriplatin treatment, we examined γ-H2AX via 

immunofluorescence in order to distinguish DNA damage-related foci from pan-nuclear γ-

H2AX; the latter is indicative of apoptosis23,24. We observed, as expected, that cisplatin-

treated cells had γ-H2AX foci characteristic of a DNA damage response. However, similar 

to untreated cells, oxaliplatin and phenanthriplatin treated cells did not have γ-H2AX foci 

(Fig. 4a–d). Quantification of γ-H2AX signal showed that at both 4 and 8 h, nearly all of the 

γ-H2AX signal in oxaliplatin and phenanthriplatin-treated cells was derived from pan-

nuclear γ-H2AX (Fig. 4c). Additionally, in the human LoVo cell line we confirmed that 

oxaliplatin-treated cells had significantly fewer γ-H2AX foci compared to cisplatin-treated 

cells (Supplementary Fig. S10f).

To further explain the absence of a DNA damage response following treatment with 

oxaliplatin and phenanthriplatin, comet assays were performed 6 h after treatment. Comet 

assays test for the presence of smaller weight DNA fragments produced following DNA 

breaks. A neutral comet assay, most sensitive to DNA double-strand breaks, indicated that 

oxaliplatin and phenanthriplatin treatment results in significantly fewer double-strand breaks 

than untreated or cisplatin treated murine lymphoma or human breast cancer cells (Fig. 4e 

and Supplementary Fig. S10g). Interestingly, an alkaline comet assay, sensitive to both 

single and double-strand breaks, indicated that only oxaliplatin treatment yielded 

significantly fewer DNA breaks than either no treatment or cisplatin treatment (Fig. 4f). It 

has been previously shown that in the alkaline comet assay S-phase cells yield longer tails 

than G1 or G2 cells. This result is consistent with having a large proportion of cells in S-

phase as in the untreated condition, particularly relative to oxaliplatin and phenanthriplatin 

treatment25.

Oxaliplatin and phenanthriplatin induce ribosome biogenesis stress

Our RNAi signatures predicted the mechanism of action of oxaliplatin and phenanthriplatin 

to involve transcription or translation inhibition. To further explore this possibility, we first 

measured the amount of platinum on RNA and DNA after 3 h of cisplatin, oxaliplatin and 

phenanthriplatin treatment at LD80–90. Atomic absorption spectroscopy revealed that all 

three compounds were present at appreciable amounts on both nucleic acids (Fig. 5a). 

Interestingly, oxaliplatin treatment yielded the least amount of platinum on either nucleic 

acid - potentially because it has the lowest LD80–90 concentration.

Defects in ribosome biogenesis can rapidly induce cell death in a p53-dependent and DNA 

damage-independent manner26. Given the similarity between this type of cell death and that 

induced by oxaliplatin and phenanthriplatin treatment, we examined ribosomal RNA (rRNA) 

synthesis following drug treatment. Indeed, we observed that within 30 minutes, pre-rRNA 

was decreased by nearly 50% in response to oxaliplatin and phenanthriplatin treatment (Fig. 

5b). At later time points, pre-rRNA was upregulated many-fold by oxaliplatin and 

phenanthriplatin exposure – a phenotype paralleled by actinomycin D, a known inducer of 

ribosome biogenesis stress26, but not cisplatin (Fig. 5b). Importantly, RNA polymerase II 

transcript levels were unaffected by treatment with any of the platinum agents 
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(Supplementary Fig. S11). Finally, to demonstrate on a functional genetic level that 

ribosome biogenesis stress was relevant to cell death caused by oxaliplatin and 

phenanthriplatin, we examined the role of RPL11 (RPL11) in drug-induced cell death. 

Ribosome biogenesis stress results in excess subunits of RPL11 that then bind Mdm2 and 

block the ability of Mdm2 to bind p5326. shRNA-mediated knockdown of RPL11 in Eu-Myc 

p19Arf−/− lymphoma cells and A549 human lung adenocarcinoma cells confers resistance to 

agents that induce ribosome biogenesis stress, including actinomycin D, rapamycin, 

mithramycin A, BMH-21 and 5-FU (Fig. 5c and Supplementary Fig. S12a–c). shRPl11 also 

induced resistance to oxaliplatin or phenanthriplatin treatment. Furthermore, we examined 

total p53 and cleaved Poly-ADP ribose polymerase 1 (cPARP) levels with or without an 

RPL11 hairpin 12 h after treating with the platinum agents and actinomycin D (Fig. 5d and 

Supplementary Fig. S12d). We saw that RPL11 knockdown led to diminished total p53 and 

cleaved PARP1 levels in cells treated with actinomycin D, oxaliplatin or phenanthriplatin, 

but not cisplatin. This effect is particularly strong when accounting for p53 and cPARP 

induction caused by knockdown of an essential component of the ribosome such as RPL11. 

Thus, the ribosome biogenesis stress pathway is a central mediator of oxaliplatin and 

phenanthriplatin cytotoxicity.

The localization of nucleolar proteins is altered in a characteristic manner in response to 

different types of cellular stress27, including impaired translation. After 8 h of treatment Eu-
Myc p19Arf−/− lymphoma cells with the platinum agents and actinomycin D, we observed 

differences in the localization of nucleophosmin and fibrillarin, two proteins normally 

localized to the nucleolus (Supplementary Fig. S13a). Cisplatin treatment did not result in 

any cells with nucleolar foci whereas actinomycin D, oxaliplatin and phenanthriplatin 

treatment resulted in a modest increase relative to no treatment (Supplementary Fig. S13b). 

More notably, nucleophosmin was predominantly found outside the nucleus for roughly 80 

percent of cisplatin treated cells, but not in the other conditions (Supplementary Fig. S13c). 

The unique localization of nucleolar proteins among platinum agents further indicates that 

oxaliplatin and phenanthriplatin have a mechanism of action that is distinct from cisplatin 

and more similar to actinomycin D.

Next we sought to gain more insight into the influence oxaliplatin may exert on translation 

machinery. To do so, we first examined the polysome profiles of Eu-Myc p19Arf−/− 

lymphoma cells after 6 h of treatment with cisplatin, oxaliplatin and phenanthriplatin. Cells 

treated with oxaliplatin or phenanthriplatin had significantly fewer polysomes relative to 

monosomes compared to untreated or cisplatin treated cells (Fig. 5e,f and Supplementary 

Fig. S14). Thus, the global translation machinery is significantly perturbed by oxaliplatin 

treatment. Next, to more directly demonstrate the potential disruptive effect oxaliplatin 

treatment had on translation, we quantified nascent protein synthesis via a click-chemistry 

compatible puromycin analogue28. Indeed, we observed in multiple cancer cell lines that 

oxaliplatin disrupts protein synthesis as early as 9 h after treatment (Fig. 5g and 

Supplementary Fig. S15).

If oxaliplatin impairs ribosomal function, we would expect to see an effect of oxaliplatin 

treatment on the efficacy of known translation inhibitors. To examine this possibility, we 

treated cells with a combination of rapamycin, an mTOR inhibitor and known ribosome 
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biogenesis stress inducer, and either cisplatin or oxaliplatin. We then measured synergy or 

antagonism by comparing to the Bliss Independence additivity model29. We saw that the 

combination of cisplatin and rapamycin was additive, as indicated by the near zero deviation 

from Bliss Independence (Fig. 5h). However, the combination of oxaliplatin and rapamycin 

was very antagonistic. Interestingly, this antagonism was not present if oxaliplatin was dosed 

before rapamycin, indicating an epistatic relationship between the mechanisms of action of 

the two drugs (Fig. 5i). To further study this relationship, we examined RNAi signatures to 

understand how the mechanisms of action varied in combination. Interestingly, the signature 

was more similar to rapamycin alone than oxaliplatin alone whether dosed simultaneously or 

dosed with oxaliplatin 6 h prior to rapamycin (Fig. 5j). This suggests that active translation 

must be occurring in order for oxaliplatin to exert its cytotoxic effects.

Ribosome biogenesis stress sensitizes cells to oxaliplatin

Next, we sought to determine if ribosome biogenesis stress was a central determinant of 

oxaliplatin efficacy in human cells and across diverse tumor types. To perform this analysis, 

we utilized the NCI-60 human cancer cell line database, which includes gene expression 

data for each cell line and their oxaliplatin treatment response. Using the CellMiner NCI-60 

database query tool30, we were able to probe for genes whose expression in naïve cells 

correlated to sensitivity to oxaliplatin treatment. For example, RSL24D1, the gene most 

highly correlated to sensitivity is shown in comparison to drug response profile of 

oxaliplatin (Fig. 6a and Supplementary Fig. S16). By performing gene ontology annotation 

via DAVID on the list of 417 genes whose expression significantly correlated with 

oxaliplatin sensitivity, we identified an enrichment of terms related to translation, the 

ribosome and rRNA (Fig. 6b)31,32. Additionally, Gene Set Enrichment Analysis (GSEA) on 

the same set of genes identified “ribosome” as the only significantly enriched KEGG 

pathway (Fig. 6c)33. Performing similar analysis for cisplatin at the same threshold used for 

oxaliplatin only yielded one gene, SFLN11. Whereas the previous analysis examined gene 

expression relative to the entire set of cell lines, we wanted to see if expression of translation 

machinery correlated with oxaliplatin sensitivity within particular cancer types. Indeed, we 

saw that in both lung and breast cancer cell lines, higher translation machinery expression 

correlated with an increase in oxaliplatin sensitivity (Fig. 6d).

We reasoned that this increased expression of translation machinery represents a “translation 

addiction” and that ribosome biogenesis stress inducers kill by depriving the cell of 

translation machinery. Thus, a further increase of translation machinery expression would 

buffer against translation machinery depriving treatments such as ribosome biogenesis stress 

inducers. To examine this, we knocked down PTEN (PTEN) in order to upregulate the 

mTOR pathway and thus elevate translation machinery expression (Supplementary Fig. 

S17). Indeed, upon knocking down PTEN, the cells were rendered more resistant to known 

ribosome biogenesis stress inducers actinomycin D and 5-FU, as well as to oxaliplatin (Fig. 

6e). Interestingly, we also saw that PTEN knockdown sensitized to cisplatin.

We next wanted to explore how these results might be relevant to the clinic. Given the 

frequent use of oxaliplatin in the treatment of colorectal cancer, we examined whether 

translation addiction could underlie oxaliplatin efficacy in this disease as opposed to cancers 
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where oxaliplatin shows little efficacy. We compared gene expression between all available 

colorectal and ovarian tumor samples from the The Cancer Genome Atlas (TCGA)34,35. We 

then performed GSEA on all differentially expressed genes between the two cancer types. 

Based on genes that are upregulated in colorectal cancer relative to ovarian cancer, GSEA 

identified the “ribosome” as one of the most enriched pathways that distinguishes colorectal 

cancer from ovarian cancer (Fig. 6f and Supplementary Table S7). GSEA did not identify 

any significant pathway enrichment from genes upregulated in ovarian cancer relative to 

colorectal cancer (Supplementary Table S8). Collectively, these data argue that the efficacy 

and clinical utility of oxaliplatin is derived from its ability to induce ribosome biogenesis 

stress.

Finally, we wanted to determine if we could identify correlates of oxaliplatin response in 

cancers that are not typically thought to respond to oxaliplatin. Prior studies have indicated 

that APC (APC), a key negative regulator of the Wnt pathway, loss in colorectal cancer 

causes a “translation addiction” that is necessary for tumorigenesis36. Thus, we examined 

Wnt pathway genes and their correlation to translation metagene expression in the TCGA 

expression databases37. Interestingly, we found that APC expression significantly correlated 

with translation metagene expression in several cancers, including breast and lung (Fig. 6g 

and Supplementary Fig. S18). We chose breast cancer for further examination as the NCI-60 

breast cancer cell lines had the best correlation between translation machinery expression 

and oxaliplatin sensitivity. Using a panel of breast cancer cell lines, we confirmed that APC 

expression correlated with oxaliplatin sensitivity (Fig 6h). Therefore, APC expression may 

represent a marker of oxaliplatin sensitivity in breast cancers, and potentially other cancers 

as well.

Discussion

Our findings have significant implications for the evaluation of small molecules and their 

derivatives used in the clinic. First, in addition to potential changes in drug 

pharmacodynamics and pharmacokinetics, alterations in the nature of the ligands in 

platinum complexes have profound implications for primary mechanism of action. Thus, 

platinum drugs may not function interchangeably with their derivatives in cancer regimens. 

This phenomenon explains a lack of efficacy for oxaliplatin in the treatment of malignancies 

conventionally treated by cisplatin, as well as the unanticipated and poorly understood value 

of oxaliplatin as a treatment for colorectal cancer38–41. Second, changes in small molecule 

structure can alter the molecular determinants of chemotherapeutic response. For example, 

instead of cisplatin, oxaliplatin has been tested as a front-line treatment for breast and non-

small-cell lung cancer (NSCLC)42–47. Furthermore, recent sequencing data has shown that 

greater than ten percent of breast and non-small cell lung cancers harbor inactivating 

mutations in ATM and Chk248,49. Our data suggest that these mutant tumors may have 

differential responses to cisplatin versus oxaliplatin. Thus, tumor mutations may represent 

important determinants of susceptibility to related platinum drugs.

Additionally, our data suggest that a “translation addiction” in colorectal cancer is 

responsible for the effectiveness of oxaliplatin. Notably, other studies have indirectly 

associated the translation machinery with the mechanism of oxaliplatin-mediated cell 
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killing. In one study, three oxaliplatin resistant sublines were generated and microarrays 

were performed to compare the resistant and parental cell lines50. In each pair of cell lines, a 

significant portion of the differentially expressed transcripts between the resistant and 

parental lines corresponded to genes composing the ribosome. Another study generated an 

oxaliplatin sensitivity predictor based on NCI-60 oxaliplatin dose responses and cell line 

gene expression data51, which enabled prediction of the responses to oxaliplatin in both cell 

lines in vitro as well as with patient colorectal cancer xenografts. Additionally, others used 

microarray technology to build gene expression signatures to that best predicted outcomes in 

clinical colorectal cancer cases. Despite this unbiased approach their signatures consisted of 

ribosome components52–57. Despite the implications for a role of the translation machinery 

in colorectal cancer, none of the aforementioned studies made such a connection.

mTOR-dependent translation elongation plays a critical role in colorectal cancer 

tumorigenesis36. For example, APC-deficient lesions increase protein synthesis, such that 

the progression of tumorigenesis is prevented by rapamycin. Thus, “translation addiction” 

accompanies colorectal cancer progression, making rapamycin an attractive therapeutic 

option. Additionally, our data indicate that APC and the translation machinery are linked in 

other cancer types. However, despite numerous attempts, rapamycin has not attained a solid 

foothold in cancer treatment, owing in part to cell intrinsic resistance mechanisms such as 

compensatory upregulation of PI3K signaling58 and the development of rapamycin 

insensitive mTOR mutations59. In cancer types for which rapamycin has failed in clinical 

trials, oxaliplatin may be viewed as a preferable choice for inhibition of translation. 

Moreover, given the role of tumor-intrinsic Wnt signaling in suppressing anti-tumor T-cell 

immune responses60, therapies like oxaliplatin that are more effective in Wnt activated 

tumors present a potential alternative to immunotherapy.

Although previous studies have identified differences in cellular response between cisplatin 

and oxaliplatin, ours is the first to identify causal links between oxaliplatin, ribosome 

biogenesis stress and cell death. For instance, oxaliplatin creates fewer cross-links per base 

than cisplatin, yet retains its cytotoxicity61. We suggest that the ability of oxaliplatin to 

cross-link DNA may be of questionable relevance, for we do not see activation of the DNA 

damage response. However, oxaliplatin-modified DNA could still lead to inhibition of rRNA 

synthesis, which would ultimately be responsible for ribosome biogenesis stress. In addition, 

one can envision scenarios in which oxaliplatin-modified rRNA, mRNA and/or protein could 

all potentially contribute to ribosome biogenesis stress. A DNA damage response-

independent mechanism of cell death is consistent with previous observations that cisplatin- 

or oxaliplatin-resistant cell lines often do not exhibit cross-resistance3. Finally, an analysis 

of the effects of various chemotherapeutics at a range of concentrations on rRNA synthesis 

and processing found that at high enough concentrations of many agents, including cisplatin 

and oxaliplatin, perturb this process62. However, this study did not ascribe a causal link 

between ribosome biogenesis perturbation and cell death. Thus, although many 

chemotherapeutics may inhibit ribosome biogenesis at high drug concentrations, this 

behavior is unlikely to be their primary mechanism of action. Our findings demonstrate that 

at clinically relevant, and lower, concentrations oxaliplatin causes ribosome biogenesis stress 

whereas cisplatin does not. Thus, our work demonstrates that perturbation of ribosome 

biogenesis is functionally important for oxaliplatin, and not cisplatin, to mediate cell death.
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Online Methods

shRNA Constructs

All shRNAs used were in the MLS retroviral vector with the exception of RPL11 in 

TMPVIR63,64. Transfection and infection were performed as previously described6. Unless 

shown, all knockdowns were previously validated for knockdown and off-target effects5. 

shRNA target sequences listed in Supplementary Table S9.

GFP Competition Assays

Eμ-Mycp19arf−/−, Eμ-Mycp53−/− lymphoma or p185+ BCR-Ablp19arf−/− leukemia cells were 

infected with GFP-tagged shRNAs such that 15–25% of the population were GFP positive. 

An eighth of a million cells in 250μL B-cell media (BCM) were then seeded into 24-well 

plates. For wells that would remain untreated as a control, only 1/16th of a million cells were 

seeded. Next, 250μL of drug containing media was added to the cells. After 24 h, 300μL of 

cells from untreated wells are removed and replaced by 300μL fresh BCM. All wells then 

received 500μL BCM before being placed in the incubator for another 24 hours. At 48 h, 

cells transduced with the control vector, MLS, were checked for viability via flow cytometry 

on a BD FACScan using propidium iodide (PI) as a live/dead marker. Untreated wells then 

had 700μL of cells removed and replaced with 700μL fresh media followed by a further 1mL 

of fresh media. Wells for which drug had killed 80–90% of cells (LD80–90) were then 

diluted further by adding 1mL of BCM. Finally, at 72 h all wells for which an LD80–90 was 

achieved, as well as the untreated samples, were run via flow cytometry to determine GFP%. 

For shRPL11 experiments the above procedures were followed except in the presence of 

1μg/mL doxycycline, including 24 h of pre-incubation of the hairpin containing cells in 

doxycycline. For all competition assays, at least three separate biological replicates were 

performed. Here, we define biological replicates as a fresh thaw that was infected, selected 

or sorted if necessary, then run through the comeptition assay.

RNAi Signatures

Drugs were dosed to achieve an LD80–90 in Eμ-Myc p19arf−/− cells by propidium iodide 

exclusion as determined by flow cytometry at 48 h. GFP enrichment/depletion was then 

determined by flow cytometry at 72 h. Linkage ratios and p-values were generated as 

described previously5–7. All flow cytometry was conducted using a BD FACScan. For all 

RNA signatures, at least three separate biological replicates were performed. Here, we 

define biological replicates as a fresh thaw of Eμ-Myc p19arf−/− cells that were infected, 

selected or sorted if necessary, then run through the signature assay.

Code Availability

Parameters and code for the modified K nearest neighbors (K-NN) algorithm for 

determining drug mechanism of action can be found in previous publications5,7.

Drug Doses

Unless otherwise noted, all drugs were administered to Eμ-Mycp19arf−/−, Eμ-Mycp53−/− 

lymphoma or p185+ BCR-Ablp19arf−/− leukemia cells at a concentration to achieve an 
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LD80–90 and 48 h as assessed via flow cytometry on a BD FACScan using propidium 

iodide as a live/dead marker. For time-point experiments, a portion of each sample was 

cultured until 48 h post-treatment to assure LD80–90 was achieved. If not, that sample was 

discarded and not included in further analysis. Similarly rigorous equipotent dosing was 

followed for adherent cell lines by first dosing over a large concentration range for 96 h and 

analyzing cell number via CellTiter-Glo (Promega). Then, for future equipotent doses only 

concentrations that achieved an IC80 at 96 h were used. For area under the curve 

calculations, whole dose response curves were analyzed with at 96 h and analyzed via 

MatLab 2015a (MathWorks). All drug doses were performed in at least once from three 

independent cultures.

Cell Cycle

One to two million cells were collected per sample after treatment with a concentration of 

drug required to achieve an LD80–90 at 48 h for Eμ-Mycp19arf−/− or IC80 at 96 h for A549 

and LoVo. They were washed in PBS and then resuspended in 1mL of PBS+2% fetal bovine 

serum (FBS). Cells were then fixed in 70% ethanol overnight at -20° C. Cells were then 

rehydrated with 5mL of PBS, spun out of ethanol and then washed in PBS. Next, 1mL of PI 

staining solution (3.8mM sodium citrate, 50μg/mL PI in PBS) and 20 μL of RNAse A were 

used to resuspend the pellet. Cells were then incubated overnight at 4°C before FACS on a 

BD FACScan. Cell cycle profiles were analyzed using FlowJo V10.

RNA Isolation and Expression Analysis

Total RNA was isolated via QIAshredder and Qiagen RNeasy Mini Kit and cDNA was 

generated via M-MLV Reverse Transcriptase with RNaseOUT (ThermoFisher Scientific) 

and random hexamers. qRT-PCR was performed with Fast SYBER Green Mastermix and 

StepOnePlus Real-Time PCR System (Applied Biosystems) with three biological replicates, 

each with two technical replicates. Primer sequences listed in Supplementary Table S10.

Western Blotting

Cell pellets were washed in PBS and frozen before being lysed in RIPA buffer. They were 

then boiled after the addition of Laemmli sample buffer and run on an SDS-PAGE gel. From 

the gel they were transferred to Millipore immobilin-P membranes. The antibodies used 

were mouse anti-p53 (NCL-p53–505, Novocastra; 1:500), human anti-p53 (2524, Cell 

Signaling; 1:1,000), anti-phospho p53 (Ser 15) (9284, Cell Signaling; 1:1,000), anti-phospho 

p53 (Ser 20) (9287, Cell Signaling; 1:1,000), anti-γ-H2AX (20E3, Cell Signaling; 1:1,000), 

anti-p21 (sc-6246, Santa Cruz, 1:200), anti-cPARP1 (9544, Cell Signaling, 1:1,000), anti-

GAPDH (sc-32233, Santa Cruz, 1:200), anti-β-actin (13E5, Cell Signaling; 1:1,000), anti-

HSP90 (68/Hsp90, Becton Dickinson; 1:6,000).

Cell Culture

Eμ-Myc p19arf−/−, Eμ-Myc p53−/− and p185+ BCR-Abl p19arf−/− primary murine tumor 

cells were cultured according to established protocols65. DT40 cells were cultured at 37°C 

with 5% CO2 in RPMI-1640 medium with glutamine (11875, Invitrogen, Carlsbad, CA) 

supplemented with 1% chicken serum (16110-082, Invitrogen, Carlsbad, CA), 10-5 M β-

Bruno et al. Page 12

Nat Med. Author manuscript; available in PMC 2017 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



mercaptoethanol (M-3148, Sigma-Aldrich, St. Louis, MO), penicillin-streptomycin 

(15140-122, Invitrogen), and 10% FBS (100-106, Gemini Bio-Products, West Sacramento, 

CA). A549, SW480, LoVo, CAMA-1, Hs578T, ZR-75-1, BT549, SK-BR-3 and HCC1937 

cells were obtained from ATCC (CCL-185, CCL-228, CCL-229, HTB-21, HTB-126, 

CRL-1500, HTB-122, HTB-30 and CRL-2336) and cultured according to ATCC guidelines. 

All cell lines, except those obtained and used directly from ATCC, were tested for 

mycoplasma and found to be negative (MycoAlert, Lonza). No authentication was 

performed.

Cellular Uptake of Platinum

Two million Eμ-Myc p19arf−/− cells were dosed at concentrations required to achieve an 

LD80–90 at 48 h or at 5μM in three biological replicates. After 3 h, they were washed three 

times in PBS, pelleted and frozen. Atomic absorption spectroscopic analysis was then 

performed as previously described66.

Structure-based Hierarchical Clustering

The ChemmineR R package was used to calculate Tanimoto coefficients and perform 

hierarchical clustering.

DT40 Knockout Line Drug Sensitivity Analysis

To measure the sensitivity, cells were continuously exposed to various concentrations of 

drugs for 72 h in triplicate. Cell survival was determined using the ATPlite 1-step kit 

(PerkinElmer) and an EnVision 2104 Multilabel Reader. To evaluate the relative cellular 

sensitivity of each mutant to wild type cells, logarithm sensitivity curves were used to 

determine the concentration that causes 90% reduction of ATP activity (IC90). The IC90 

value of each mutant was divided by that of wild type cells on the same plate. Finally, the 

quotient was converted to a logarithmic scale (base 2). Pairwise distances were calculated 

via the ‘pdist’ function with the Euclidian distance metric in Matlab 2013b.

Immunofluorescence Staining

Eμ-Myc p19arf−/− cells were dosed at an LD80–90 and after 4 or 8 h of treatment placed on 

slides via cytospin. LoVo cells were dosed at IC80 and fixed after 12 h or treatment. Cells 

were then dried and stained with anti-γ-H2AX (20E3, Cell Signaling; 1:500) and DAPI or 

anti-NPM (B0556, Sigma, 1:2000), anti-Fibrillarin (ab5821, Abcam, 1:500) and DAPI. Alex 

Fluor 488 or 555 was used as a secondary and then samples were mounted with Prolong 

Gold. An EVOS FL Auto microscope was used for imaging. Image analysis was performed 

using CellProfiler on the original images.

Comet Assays

Eμ-Myc p19arf−/− cells were dosed at an LD80–90 and after 6 h were washed and prepared 

for either alkaline or neutral comet assays. Comet tail analysis was performed using 

CaspLab using images that were all equally level adjusted in Adobe Photoshop. ZR-75-1 

cells were dosed at an IC80 and after 24 h were washed and prepared for neutral comet 
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assays. CellProfiler was used to analyze ZR-75-1 comets. The Trevigen CometAssay Kit 

was used for both cell lines.

In vivo Competition Assay

Two million Eμ-Myc p19arf−/− cells were partially infected with shChk2 and tail vein 

injected into 8-week old female C57BL/6 mice. Cisplatin, oxaliplatin or phenanthriplatin in 

sterile saline were administered via intraperitoneal injection at disease presentation (7mg/kg, 

5mg/kg or 3mg/kg, respectively) and mice were sacrificed and tumors harvested upon 

relapse, 2–3 days after treatment. Disease presentation and relapse were defined as the 

presence of palpable lymph node burden. Fold change in GFP% was assessed relative to 

untreated mice after tumor cell harvesting by flow cytometry on a BD FACScan. Each 

treatment group had five or six mice. This was chosen independently of statistical power 

analysis. No randomization or blinding methods were used to determine treatment branches. 

The experiment was performed in accordance to MIT’s Committee on Animal Care (CAC) 

prior to execution.

Combination Doses and Bliss Independence

Eμ-Mycp19arf−/− lymphoma cells were treated with drug and analyzed as detailed above, 

except with two drugs in combination in a 3×5 dose response matrix where the outer wells 

were only exposed to a single drug6. The single drug wells were then used to calculate the 

expected Bliss Independence values of the combination wells. The expected Bliss 

Independence values were then subtracted from the observed values. The minimum or 

maximum value in the matrix was then chosen as the minimum or maximum percent excess 

under Bliss Independence.

Statistical Analysis

Two-sided, non-parametric tests were performed unless otherwise specified. If two 

conditions were compared, Mann-Whitney U-test was used. If more than one condition was 

compared to a control condition then one-way ANOVA with Dunnett’s Multiple Comparison 

Test was used. If a t-test was used, the data were first confirmed to fit a normal distribution 

via the ‘kstest’ function in Matlab 2015a. See figure legends for details on type of replicate 

and n values used.

Principal Component Analysis

Principal component analysis (PCA) was used to provide another means of visualizing our 

data, and was not used to classify new compounds. This was done via Matlab 2015a. The 

‘pca’ function was used with data from Supplementary Table S4 to generate the necessary 

input variables for the ‘biplot’ function.

Bioinformatic Analysis

CellMiner was used to obtain NCI-60 oxaliplatin sensitivity-expression level correlation 

values30. Benjamini-Hochberg correction was then used to eliminate genes above an FDR 

threshold of 0.05. For the TCGA tumor expression analysis, RNA-seq gene-level raw count 

data for colorectal and ovarian cancer tumor samples that went through the same pipeline for 
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generation of expression levels (RPKM values)(193 and 420 samples respectively) were 

downloaded from the TCGA data portal. The Bioconductor edgeR package in R was used to 

perform normalization and analysis for differential expression between these two cancer 

types67. We obtained 3247 significantly differentially expressed genes between these two 

cancer types, with a log2-fold change in normalized tag counts greater than 2.5 

(corresponding to a Benjamini-Hochberg corrected p-value of 5.8E-3 from a negative 

binomial generalized linear model fit). Among these genes, 1909 and 1338 were 

significantly up-regulated and down-regulated, respectively, in ovarian cancer compared to 

colorectal cancer. Significantly correlated (NCI-60) or differentially expressed (TCGA) 

genes were then loaded in Gene Set Enrichment Analysis and the pre-ranked list tool was 

used33.

For both NCI-60 and TCGA datasets a translation metagene was obtained by averaging 

expression of 120 genes known to be involved in translation for each. To demonstrate 

correlation between oxaliplatin sensitivity and translation, we plotted the GI50 values (log-

scale) against the metagene expression levels for lung and breast cancer cell lines in the 

NCI-60 catalogue. To examine associations between Wnt pathway activity and expression 

levels of the translation machinery, we calculated Pearson correlation coefficients of the 

translation metagene expression with that of known Wnt pathway genes in the Reactome 

database for breast cancer samples in the TCGA database. A heatmap of expression values 

of translation machinery genes ordered by decreasing APC expression values was then 

plotted to visualize such correlations.

Ribosome Profiling

One million cells for each of three replicates were harvested by centrifugation at 300g for 5 

m, resuspended in ice-cold PBS containing 100μg/mL cycloheximide and centrifuged again. 

Cell pellets were flash frozen in liquid nitrogen. To prepare the lysate, cell pellets were 

thawed in lysis buffer (10mM Tris-HCl, pH 7.4, 5mM MgCl2, 1% Triton X-100, 100mM 

KCl, 0.02U/μL Superase-IN, 2mM DTT, and 100μg/mL cycloheximide), passed four times 

through a 26-gauge needle and cleared by centrifugation at 1,300g for 10 m at 4°C. The 

supernatant was loaded onto a 10–50% w/v linear sucrose gradient containing 20mM 

HEPES-KOH, pH 7.4, 5mM MgCl2, 100mM KCl, 2mM DTT, 100μg/mL cycloheximide, 

and 0.02U/μL Superase-IN. Gradients were centrifuged for 2 h at 36,000 rpm and 4°C and 

then fractionated by upward displacement using a Biocomp Gradient Station with 

continuous absorbance monitoring at 254 nm. Traces were quantified using Fiji. Dosing of 

replicates was performed as technical replicates from the same culture that had been split 

into three the previous day. Profiling was conducted in two separate rounds, one set of 

samples together and the other two together in consecutive weeks.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
RNAi signatures identify a spectrum of platinum drug activities. (a) A schematic 

representation of our signature-based approach. Eμ-Myc p19Arf−/− lymphoma cells are 

partially infected with GFP-tagged shRNAs targeting the indicated eight genes. The 

individual pools of eight shRNA containing cells are treated with drug to achieve 80–90% 

killing at 48 h. Relative GFP% is measured at 72 h by flow cytometry and the subsequent 

shRNA signature is compared to our reference set using our modified K-nearest neighbors 

algorithm. (b) A schematic representation of our modified K-nearest neighbors algorithm. 

First, the test compound’s nearest reference set category is identified by Euclidian K-nearest 

neighbor’s analysis. Second, the linkage ratio (L.R.) is determined by dividing the pairwise 

distances of the category containing the new drug by the category without the new drug. 

Third, the linkage ratios are then calculated for all out-of-category drugs as if they were 

members of the category in question. This generates a background distribution of negative 

control linkage ratios. Fourth, the linkage ratio of the new drug is compared to the linkage 

ratio distribution of the negative controls to obtain a p-value. If p > 0.05 then drug is 

classified as belonging to a “new class” and having a mechanism of action not represented in 

the reference set. (c) On the right, cisplatin and carboplatin, two of the three clinically 

approved platinum agents classify as DNA cross-linkers. On the left, oxaliplatin, the third 

clinically approved platinum agent, and phenanthriplatin, a mono-functional platinum agent, 

both classify as transcription/translation inhibitors. (d) A heat map showing platinum 

compound signatures, with reference compounds rapamycin, actinomycin D and 

chlorambucil included. Rapamycin and actinomycin D represent transcription/translation 

Bruno et al. Page 20

Nat Med. Author manuscript; available in PMC 2017 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



inhibitors whereas chlorambucil represents DNA cross-linkers. The other agents are shown 

classified according to their respective labels. (e) Principal components analysis of the 

platinum compounds Top2 poisons, DNA cross-linkers and transcription/translation 

inhibitors. Tables show the percent variance explained by each principal component, as well 

as the principal component 1 loadings depicting the percent contribution of each of the eight 

shRNAs for the PCA shown above. Shaded boxes represent the approximate space the 

category occupies in the PCA and are only meant to aid visualization, not category 

classification.
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Figure 2. 
Sensitivity profiles of the indicated platinum drugs on a panel of the repair-deficient DT40 

mutants. (a) Viability curves of the indicated cell lines after continuous treatment for 72 h 

with the indicated drugs. Error bars represent the S.D. (n=3). p < 0.05 (*), p < 0.01 (**) or p 

< 0.001 (***) by unpaired two-tailed Student’s t-test on the highest doses only. (b) Relative 

sensitivity of all of the DT40 mutant cell lines. A negative score and a positive score 

indicates that the cells are sensitive and resistant to the drug, respectively. The score is log2 

of the difference between IC90 (inhibitory concentration 90%) values. IC90 of wild-type cells 

are shown at the top of each panel (n=8–10). n = 3 for all others. The bars are colored 
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according to the main DNA repair function of deficient gene(s). Black; nonhomologous end 

joining (NHEJ), brown; check point, blue; homologous recombination (HR), orange: 

translesion synthesis (TLS), aqua; PARP1, green; removal of topoisomerase I or 

topoisomerase II cleavage complex, pink; Fanconi anemia (FA) pathway, light orange; DNA 

polymerase, grey; nuclease, red; nucleotide excision repair (NER), dark blue; DNA helicase.
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Figure 3. 
Phenanthriplatin and oxaliplatin exhibit distinct differences from cisplatin in cell cycle 

profiles, γ-H2AX and p53 signaling in Eμ-Myc p19arf−/− cells. (a) Results of an in vivo GFP 

competition assay. Fold change in GFP% was assessed relative to untreated mice after tumor 

cell harvesting. p < 0.01 (**) by a two-tailed Mann-Whitney test. Mean ± SEM is depicted. n 

= 5 for all conditions. (b) Cell cycle profiles of resulting from 12 h treatment by cisplatin, 

phenanthriplatin or oxaliplatin. UT: Untreated, CDDP: cisplatin, Phen: phenanthriplatin, 

Oxali: oxaliplatin (c) Western blot for γ-H2AX after cisplatin, oxaliplatin or 

phenanthriplatin treatment with or without shChk2 or shChk1 at 12 h. (d) Western blot for 

phospho-ser18 and total p53 after cisplatin, oxaliplatin or phenanthriplatin treatment with or 

without shChk2 or shChk1 at 12 h. (e) Densitometry quantification of Fig. 3c. Data are mean 

± SEM via three independent quantification results. p < 0.05 (*), p < 0.01 (**) for each group 

relative to cisplatin shChk2 or shChk1 by one-way ANOVA with Dunnett’s Multiple 

Comparison Test. (f) Densitometry quantification of Fig. 3d. Data are mean ± SEM via four 

independent quantification results. p < 0.001 (***) for each group relative to cisplatin 

shChk2 or shChk1 by one-way ANOVA with Dunnett’s Multiple Comparison Test. (g) 

Results of qPCR analysis conducted for Puma and Noxa after 4 and 12 h of cisplatin, 

phenanthriplatin or oxaliplatin treatment. Data are represented as mean ± SEM. n = 3 from 

independent experiments from independent cultures of cells.
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Figure 4. 
Immunofluorescence of γ-H2AX and comet assays reveal lack of DNA damage resulting 

from oxaliplatin and phenanthriplatin treatment in Eμ-Myc p19arf−/− cells. (a) Foci per 

nucleus for each condition at both 4 h and 8 h after treatment. Data are represented as mean 

± SEM for each field. p < 0.05 (*), p < 0.01 (**) or p < 0.001 (***) for each group relative to 

untreated by one-way ANOVA with Dunnett’s Multiple Comparison Test. (b) Apoptotic 

cells identified via pan-nuclear γ-H2AX as a percent of total nuclei. Data are represented as 

mean ± SEM for each field. p < 0.0005 (***) for each group relative to untreated by one-way 

ANOVA with Dunnett’s Multiple Comparison Test. (c) The sum of the integrated intensity 

of pan-nuclear γ-H2AX divided by the total RFP signal for each field. Data are represented 
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as mean ± SEM for each field. p < 0.0005 (***) for each group relative to untreated by one-

way ANOVA with Dunnett’s Multiple Comparison Test. For a-c, 4 fields were analyzed for 

each condition except 4 h cisplatin and 8 h phenanthriplatin which had 5 each. (d) 

Representative images of γ-H2AX immunofluorescence staining. Insets are 2.5× magnified. 

(e) Quantification of tail moment after performing a neutral comet assay 6 h after indicated 

drug treatment. Box center line represents the mean and box limits are quartiles 1 and 3, and 

whiskers show 10th and 90th percentile. On the right, representative images from each 

untreated, cisplatin and oxaliplatin treated cells. p < 0.05 (*), p < 0.01 (**) or p < 0.001 (***) 

for each group relative to untreated or cisplatin by one-way ANOVA with Dunnett’s 

Multiple Comparison Test. Number of comets analyzed for untreated, cisplatin, oxaliplatin, 

phenanthriplatin and actinomycin D were 117, 37, 77, 76 and 143, respectively. (f) 
Quantification of percent DNA in tail after performing a neutral comet assay 6 h after 

indicated drug treatment. Box center line represents the mean and box limits are quartiles 1 

and 3, and whiskers show 10th and 90th percentile. On right, representative images from each 

untreated, cisplatin and oxaliplatin treated cells. p < 0.05 (*) for each group relative to 

untreated or cisplatin by one-way ANOVA with Dunnett’s Multiple Comparison Test. 

Number of comets analyzed for untreated, cisplatin, oxaliplatin, phenanthriplatin and 

actinomycin D were 67, 77, 64, 50 and 91, respectively.
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Figure 5. 
Oxaliplatin and phenanthriplatin induce ribosome biogenesis stress. (a) Platinum per μg of 

nucleic acid as determined by atomic absorption spectroscopy as a result of 3 h of treatment 

of Eu-Myc p19Arf−/− lymphoma cells with cisplatin, oxaliplatin or phenanthriplatin at a 

concentration required to achieve LD80–90 at 48 h. Data are represented as mean ± SEM 

from three independent doses and cultures. p < 0.005 (**) by a two-tailed Student’s t-test. (b) 

Percent of pre-ribosomal RNA at various time points after treatment of Eu-Myc p19Arf−/− 

lymphoma cells as determined by qPCR and normalized to GAPDH. Dashed red line 

indicates no change. Data are represented as mean ± SEM from four independent doses and 

cultures except 3 h which had five. (c) A heatmap depicting enrichment or depletion of two 

validated hairpins against RPL11 as a result of drug treatment in of Eu-Myc p19Arf−/− 

lymphoma cells. (d) Above: western blot for total p53, cleaved PARP (cPARP) and GAPDH 

12 h after treatment with or without a hairpin against RPL11 in of Eu-Myc p19Arf−/− 

lymphoma cells. Below: densitometry quantification of cPARP. Shown is the ratio of cPARP 

in the shRPL11-2 condition relative to control for each treatment. Data are represented as 

mean ± SEM from three independent densitometry quantification results. (e) Representative 

polysome gradient after 6 h of treatment with the indicated agents Eμ-Myc p19arf−/− cells. 

(f) The ratio of polysomes to monosomes normalized to the untreated condition derived 

from the quantification of the area under the curve of monosome and polysome fractions. 

Data are represented as mean ± SEM from three technical dosing replicates. p < 0.01 (**) or 

p < 0.001 (***) for each group relative to cisplatin by one-way ANOVA with Dunnett’s 

Multiple Comparison Test. (g) Fraction of newly synthesized protein relative to the untreated 
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condition for Eu-Myc p19Arf−/− lymphoma cells at 9 h as measured by O-propargyl 

puromycin incorporation. Data are represented as mean ± SEM. p < 0001 (***) for each 

group relative to untreated by one-way ANOVA with Dunnett’s Multiple Comparison Test. 

All conditions were conducted with two independent doses on independent cultures. 

Number of fields analyzed was 11 for untreated, 10 for actinomycin D, oxaliplatin, cisplatin 

and carboplatin, 7 for cycloheximide and 4 for phenanthriplatin. (h) Minimum percent 

excess PI negative of Eu-Myc p19Arf−/− lymphoma cells under Bliss Independence, a control 

model of additivity, for the combination of rapamycin with either cisplatin or oxaliplatin. 

Data are represented as mean ± SEM from three independent doses on independent cultures. 

(i) Minimum percent excess PI negative cells under Bliss Independence, for the combination 

of rapamycin and oxaliplatin for which co-dosing was staggered as shown. Data are 

represented as mean ± SEM from three independent doses on independent cultures. (j) RNAi 

signatures for rapamycin or oxaliplatin, or the combination of the two dosed simultaneously 

or oxaliplatin 6 h prior to rapamycin. Both combination signatures were more similar to 

rapamycin than oxaliplatin.
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Figure 6. 
Evidence for sensitization to oxaliplatin in “translation addicted” cell lines and primary 

tumors. (a) Graphs of z-scores depicting relative resistance or sensitivity to oxaliplatin for 

various cell lines (left) or relative abundance of RSL24D1 transcript levels (right). (b) Gene 

ontology terms identified by DAVID as being significantly enriched among the 417 genes 

whose expression significantly correlated to oxaliplatin sensitivity. (c) The sole KEGG 

pathway identified by GSEA as being significantly enriched among the 417 genes whose 

expression significantly correlated to oxaliplatin sensitivity. (d) The correlation of the 

translation machinery metagene, an average of ~120 translation related gene transcripts, to 
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oxaliplatin sensitivity from the NCI-60 for lung and breast cancer cell lines. (e) A heatmap 

depicting enrichment or depletion of three validated hairpins targeting PTEN as a result of 

drug treatment of Eu-Myc p19Arf−/− lymphoma cells. (f) Left, a heatmap representing the 

relative expression of levels of all genes that are differentially expressed in ovarian cancer 

relative to colorectal cancer by an absolute fold change of at least log2(2.5). Right, the two 

non-digestion/metabolism related KEGG pathways identified by GSEA as being 

significantly enriched among the genes whose expression was greater in colorectal cancer 

relative to ovarian cancer. (g) A heatmap of expression of translation machinery genes from 

the breast cancer TCGA dataset ranked by APC expression. (h) Breast cancer cell line 

sensitivity to oxaliplatin correlates to APC expression. Each dot is labeled according to the 

name of the cell line and represents the mean of three independent replicates of both the 

dosing and qPCR from the same culture.
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