140 research outputs found
Testosterone replacement therapy for older men
Despite intensive research on testosterone therapy for older men, important questions remain unanswered. The evidence clearly indicates that many older men display a partial androgen deficiency. In older men, low circulating testosterone is correlated with low muscle strength, with high adiposity, with insulin resistance and with poor cognitive performance. Testosterone replacement in older men has produced benefits, but not consistently so. The inconsistency may arise from differences in the dose and duration of testosterone treatment, as well as selection of the target population. Generally, studies reporting anabolic responses to testosterone have employed higher doses of testosterone for longer treatment periods and have targeted older men whose baseline circulating bioavailable testosterone levels were low. Most studies of testosterone replacement have reported anabolic that are modest compared to what can be achieved with resistance exercise training. However, several strategies currently under evaluation have the potential to produce greater anabolic effects and to do so in a safe manner. At this time, testosterone therapy can not be recommended for the general population of older men. Older men who are hypogonadal are at greater risk for the catabolic effects associated with a number of acute and chronic medical conditions. Future research is likely to reveal benefits of testosterone therapy for some of these special populations. Testosterone therapy produces a number of adverse effects, including worsening of sleep apnea, gynecomastia, polycythemia and elevation of PSA. Efficacy and adverse effects should be assessed frequently throughout the course of therapy
Using Radical Adult Education to Map Change in a Globalized World
Radical adult education using a sociological frame can support adult educators to see their roles as change agents within their spheres of influence. Using cultural mapping, adult educators define these spheres, stake claims, set benchmarks, grow networks, or develop participatory action research within the identified community
On model selections for repeated measurement data in clinical studies: On model selections for repeated measurement data in clinical studies
Repeated measurement designs have been widely used in various randomized controlled trials for evaluating long term intervention efficacies. For some clinical trials, the primary research question is to compare two treatments at a fixed time, using a t-test. Though simple, robust, and convenient, this type of analysis fails to utilize a large amount of collected information. Alternatively, the mixed effects model is commonly used for repeated measurement data. It models all available data jointly and allows explicit assessment of the overall treatment effects across the entire time spectrum. In this paper, we propose an analytic strategy for longitudinal clinical trial data where the mixed effects model is coupled with a model selection scheme. The proposed test statistics not only make full use of all available data but also utilize the information from the optimal model deemed for the data. The performance of the proposed method under various setups, including different data missing mechanisms, is evaluated via extensive Monte Carlo simulations. Our numerical results demonstrate that the proposed analytic procedure is more powerful than the t-test when the primary interest is to test for the treatment effect at the last time point. Simulations also reveal that the proposed method outperforms the usual mixed effects model for testing the overall treatment effects across time. In addition, the proposed framework is more robust and flexible in dealing with missing data compared to several competing methods. The utility of the proposed method is demonstrated by analyzing a clinical trial on the cognitive effect of testosterone in geriatric men with low baseline testosterone levels
A mutation in the endonuclease domain of mouse MLH3 reveals novel roles for MutLγ during crossover formation in meiotic prophase I
During meiotic prophase I, double-strand breaks (DSBs) initiate homologous recombination leading to non-crossovers (NCOs) and crossovers (COs). In mouse, 10% of DSBs are designated to become COs, primarily through a pathway dependent on the MLH1-MLH3 heterodimer (MutLγ). Mlh3 contains an endonuclease domain that is critical for resolving COs in yeast. We generated a mouse (Mlh3DN/DN) harboring a mutation within this conserved domain that is predicted to generate a protein that is catalytically inert. Mlh3DN/DN males, like fully null Mlh3-/- males, have no spermatozoa and are infertile, yet spermatocytes have grossly normal DSBs and synapsis events in early prophase I. Unlike Mlh3-/- males, mutation of the endonuclease domain within MLH3 permits normal loading and frequency of MutLγ in pachynema. However, key DSB repair factors (RAD51) and mediators of CO pathway choice (BLM helicase) persist into pachynema in Mlh3DN/DN males, indicating a temporal delay in repair events and revealing a mechanism by which alternative DSB repair pathways may be selected. While Mlh3DN/DN spermatocytes retain only 22% of wildtype chiasmata counts, this frequency is greater than observed in Mlh3-/- males (10%), suggesting that the allele may permit partial endonuclease activity, or that other pathways can generate COs from these MutLγ-defined repair intermediates in Mlh3DN/DN males. Double mutant mice homozygous for the Mlh3DN/DN and Mus81-/- mutations show losses in chiasmata close to those observed in Mlh3-/- males, indicating that the MUS81-EME1-regulated crossover pathway can only partially account for the increased residual chiasmata in Mlh3DN/DN spermatocytes. Our data demonstrate that mouse spermatocytes bearing the MLH1-MLH3DN/DN complex display the proper loading of factors essential for CO resolution (MutSγ, CDK2, HEI10, MutLγ). Despite these functions, mice bearing the Mlh3DN/DN allele show defects in the repair of meiotic recombination intermediates and a loss of most chiasmata
A single cell atlas of frozen shoulder capsule identifies features associated with inflammatory fibrosis resolution
Frozen shoulder is a spontaneously self-resolving chronic inflammatory fibrotic human disease, which distinguishes the condition from most fibrotic diseases that are progressive and irreversible. Using single-cell analysis, we identify pro-inflammatory MERTKlowCD48+ macrophages and MERTK + LYVE1 + MRC1+ macrophages enriched for negative regulators of inflammation which co-exist in frozen shoulder capsule tissues. Micro-cultures of patient-derived cells identify integrin-mediated cell-matrix interactions between MERTK+ macrophages and pro-resolving DKK3+ and POSTN+ fibroblasts, suggesting that matrix remodelling plays a role in frozen shoulder resolution. Cross-tissue analysis reveals a shared gene expression cassette between shoulder capsule MERTK+ macrophages and a respective population enriched in synovial tissues of rheumatoid arthritis patients in disease remission, supporting the concept that MERTK+ macrophages mediate resolution of inflammation and fibrosis. Single-cell transcriptomic profiling and spatial analysis of human foetal shoulder tissues identify MERTK + LYVE1 + MRC1+ macrophages and DKK3+ and POSTN+ fibroblast populations analogous to those in frozen shoulder, suggesting that the template to resolve fibrosis is established during shoulder development. Crosstalk between MerTK+ macrophages and pro-resolving DKK3+ and POSTN+ fibroblasts could facilitate resolution of frozen shoulder, providing a basis for potential therapeutic resolution of persistent fibrotic diseases
A single cell atlas of frozen shoulder capsule identifies features associated with inflammatory fibrosis resolution
Frozen shoulder is a spontaneously self-resolving chronic inflammatory fibrotic human disease, which distinguishes the condition from most fibrotic diseases that are progressive and irreversible. Using single-cell analysis, we identify pro-inflammatory MERTKlowCD48+ macrophages and MERTK + LYVE1 + MRC1+ macrophages enriched for negative regulators of inflammation which co-exist in frozen shoulder capsule tissues. Micro-cultures of patient-derived cells identify integrin-mediated cell-matrix interactions between MERTK+ macrophages and pro-resolving DKK3+ and POSTN+ fibroblasts, suggesting that matrix remodelling plays a role in frozen shoulder resolution. Cross-tissue analysis reveals a shared gene expression cassette between shoulder capsule MERTK+ macrophages and a respective population enriched in synovial tissues of rheumatoid arthritis patients in disease remission, supporting the concept that MERTK+ macrophages mediate resolution of inflammation and fibrosis. Single-cell transcriptomic profiling and spatial analysis of human foetal shoulder tissues identify MERTK + LYVE1 + MRC1+ macrophages and DKK3+ and POSTN+ fibroblast populations analogous to those in frozen shoulder, suggesting that the template to resolve fibrosis is established during shoulder development. Crosstalk between MerTK+ macrophages and pro-resolving DKK3+ and POSTN+ fibroblasts could facilitate resolution of frozen shoulder, providing a basis for potential therapeutic resolution of persistent fibrotic diseases
Selection and characterisation of a phage-displayed human antibody (Fab) reactive to the lung resistance-related major vault protein
The major vault protein is the main component on multimeric vault particles, that are likely to play an essential role in normal cell physiology and to be associated with multidrug resistance of tumour cells. In order to unravel the function of vaults and their putative contribution to multidrug resistance, specific antibodies are invaluable tools. Until now, only conventional major vault protein-reactive murine monoclonal antibodies have been generated, that are most suitable for immunohistochemical analyses. The phage display method allows for selection of human antibody fragments with potential use in clinical applications. Furthermore, cDNA sequences encoding selected antibody fragments are readily identified, facilitating various molecular targeting approaches. In order to obtain such human Fab fragments recognising major vault protein we used a large non-immunized human Fab fragment phage library. Phages displaying major vault protein-reactive Fabs were obtained through several rounds of selection on major vault protein-coated immunotubes and subsequent amplification in TG1 E coli bacteria. Eventually, one major vault protein-reactive clone was selected and further examined. The anti-major vault protein Fab was found suitable for immunohistochemical and Western blot analysis of tumour cell lines and human tissues. BIAcore analysis showed that the binding affinity of the major vault protein-reactive clone almost equalled that of the murine anti-major vault protein Mabs. The cDNA sequence of this human Fab may be exploited to generate an intrabody for major vault protein-knock out studies. Thus, this human Fab fragment should provide a valuable tool in elucidating the contribution(s) of major vault protein/vaults to normal physiology and cellular drug resistance mechanisms
Corrigendum to "European Society for Vascular Surgery (ESVS) 2022 Clinical Practice Guidelines on the Management of Chronic Venous Disease of the Lower Limbs. [Eur J Vasc Endovasc Surg (2022) 63, 184-267]"
proofepub_ahead_of_prin
Editor's Choice – European Society for Vascular Surgery (ESVS) 2022 Clinical Practice Guidelines on the Management of Chronic Venous Disease of the Lower Limbs
Corrigendum: Volume 64, Issues 2–3, 2022, 284-285Peer reviewe
- …