20 research outputs found

    Identification of targets of Human Cytomegalovirus microRNAs by cross linking and analysis of cDNA (CRAC).

    Get PDF
    The discovery of a class of small ribonucleic acid (RNA) molecules known as microRNAs (miRNAs) has led to extensive interest in their biological relevance and role. The first miRNA was discovered in Caenorhabditis elegans in 1993. Since then studies have shown that miRNAs represent a fundamental mechanism of gene expression regulation, regulating thousands of genes at the post-transcriptional level. Given that viruses are highly adept at exploiting cellular processes, it is perhaps unsurprising they have evolved miRNAs of their own. The majority of known viral miRNAs are expressed by herpes viruses underscoring their importance to this virus family. Identifying the targets of herpes virus miRNAs would aid in elucidating the role played during infection. In this study, we aim to identify and understand the targets of the human cytomegalovirus (HCMV) encoded miRNAs using a cutting edge biochemical technique, Cross-Linking and Analysis of cDNA (CRAC). HCMV is a member of the beta (β) herpes virus subfamily and is globally distributed causing clinically asymptotic infections in immune competent individuals. However, persistent and recurrent infections in AIDS and organ transplant patients, who have a compromised immune function causes a high degree of mortality and morbidity. Intra-uterine infected infants are also at high risk with infection causing congenital abnormalities and mental retardation. Scientists worldwide are trying to understand one special characteristic of HCMV and herpes viruses in general, which is latency i.e. the presence of an intact viral genome in the cell with a majority of the genes in a dormant or silent state. Viral encoded miRNAs regulate both the viral genome as well as the host’s and this has been postulated as a latency inducing mechanism. To date, there are 22 known HCMV encoded miRNAs. On-going research in our group using techniques such as bioinformatics, RISC immunoprecipitation (RISC-IP) and microarray analysis has identified both viral and cellular targets of HCMV miRNAs. Targets include a crucial viral transactivator thought to play an important role in latency as well as cellular targets involved in a variety of functions including cell cycle control, intrinsic defence and innate cellular defence. However, the majority of HCMV miRNAs have no known function. New approaches and technologies are required to elucidate the functions of these miRNAs. The initial goal of this project is to establish and optimise the CRAC technique. This will be performed in HEK293 cells transfected with a plasmid expressing a cluster of HCMV miRNAs termed miR-US25. The long-term goal of the project will be to use CRAC technology to identify miRNA targets in infected cells

    Systematic analysis of host-cell interactions during human cytomegalovirus infection

    Get PDF
    Viruses are obligate intracellular pathogens. Therefore, their successful replication, at every stage from attachment to assembly and egress, is dependent on host cell functions. The host cell in turn engages mechanisms to counteract virus replication. As a result, viruses have evolved mechanisms to evade these counteracting measures as well as ways to reshape the cellular environment into one that’s favourable for successful replication. Systematic studies offer a platform for unravelling virus-cell interactions and in particular can address three important aspects 1) increase our understanding of basic biology of the virus, 2) identify and characterise novel cellular functions 3) provide important leads for novel targets for antiviral therapy. In this study, I investigated two aspects of virus host interaction; the role of microRNAs (miRNAs) in virus infection and the role of interferon inducible genes in virus infection. Human cytomegalovirus (HCMV) is a β herpes virus that infects humans. HCMV maintains a persistent lifelong infection in the host involving a cycle of latency and reactivation. Infection of healthy individuals with HCMV results in relatively minor symptoms. In contrast, infection of individuals with a compromised immune system, as in the case of organ transplant recipients and AIDS patients, can cause significant morbidity and mortality. In common with other herpes viruses, HCMV expresses multiple small regulatory RNAs called miRNAs. HCMV encodes at least 14 miRNAs. Identifying the targets of these miRNAs will help us understand their functional importance during infection. Recently, a biochemical technique called Cross-Linking, Ligation and Sequencing of Hybrids (CLASH), was developed by Tollervey and colleagues, representing the most advanced systematic technique for the identification of miRNA targets. We adapted this approach to identify high confidence miRNA targets during HCMV infection. However, the protocol was sub-optimal and presented us with technical challenges. Although high quality data sets were not generated, the work was crucial for the establishment of the system which is now generating promising data. Virus-cell interactions can also be elucidated by probing for host factors that are important for virus replication. Type I interferon is a highly effective inhibitor of HCMV replication. Treatment of cells with interferon results in up regulation of multiple effectors known as interferon stimulated genes (ISGs). How these genes block HCMV replication is poorly understood. A library of more than 380 ISG expressing lentiviruses was screened to determine the effects of individual ISGs on HCMV replication. The screen was performed in primary human fibroblast cells and a glioblastoma cell line called U373s. Multiple inhibitory ISGs were identified including well characterised ISGs such as cGAS, STAT2, NOD2, DDX60 and HPSE as well as novel candidates TXNIP, ELF1, FAM46C, MT1H and CHMP5. Five ISGs were identified as HCMV replication enhancers including previously published ISGs BST2 and IFITM1 and novel enhancers ODC1, BCL3 and IL28RA. siRNA screens against top hits demonstrated that STAT2, CPT1A and cGAS are dominant inhibitory factors during HCMV infection and knockdown of these genes can partially rescue HCMV replication following interferon treatment. Finally, using a corresponding rhesus ISG library we show that rhesus SAMHD1 effectively inhibits HCMV replication while human SAMHD1 has no effect, suggesting that HCMV expresses a species-specific inhibitor of SAMHD1. This study defines interferon stimulated pathways important for HCMV replication and identifies multiple novel host factors that both restrict and enhance HCMV replication. These studies demonstrate the effectiveness of using systematic approaches for the identification of novel host virus interactions

    Human cytomegalovirus evades ZAP detection by suppressing CpG dinucleotides in the major immediate early 1 gene

    Get PDF
    The genomes of RNA and small DNA viruses of vertebrates display significant suppression of CpG dinucleotide frequencies. Artificially increasing dinucleotide frequencies results in substantial attenuation of virus replication, suggesting that these compositional changes may facilitate recognition of non-self RNA sequences. Recently, the interferon inducible protein ZAP, was identified as the host factor responsible for sensing CpG in viral RNA, through direct binding and possibly downstream targeting for degradation. Using an arrayed interferon stimulated gene expression library screen, we identified ZAPS, and its associated factor TRIM25, as inhibitors of human cytomegalovirus (HCMV) replication. Exogenous expression of ZAPS and TRIM25 significantly reduced virus replication while knockdown resulted in increased virus replication. HCMV displays a strikingly heterogeneous pattern of CpG representation with specific suppression of CpG motifs within the IE1 major immediate early transcript which is absent in subsequently expressed genes. We demonstrated that suppression of CpG dinucleotides in the IE1 gene allows evasion of inhibitory effects of ZAP. We show that acute virus replication is mutually exclusive with high levels of cellular ZAP, potentially explaining the higher levels of CpG in viral genes expressed subsequent to IE1 due to the loss of pressure from ZAP in infected cells. Finally, we show that TRIM25 regulates alternative splicing between the ZAP short and long isoforms during HCMV infection and interferon induction, with knockdown of TRIM25 resulting in decreased ZAPS and corresponding increased ZAPL expression. These results demonstrate for the first time that ZAP is a potent host restriction factor against large DNA viruses and that HCMV evades ZAP detection through suppression of CpG dinucleotides within the major immediate early 1 transcript. Furthermore, TRIM25 is required for efficient upregulation of the interferon inducible short isoform of ZAP through regulation of alternative splicing

    Parasite specific 7SL-derived small RNA is an effective target for diagnosis of active trypanosomiasis infection.

    Get PDF
    <div><p>Human and animal African trypanosomiasis (HAT & AAT, respectively) remain a significant health and economic issue across much of sub-Saharan Africa. Effective control of AAT and potential eradication of HAT requires affordable, sensitive and specific diagnostic tests that can be used in the field. Small RNAs in the blood or serum are attractive disease biomarkers due to their stability, accessibility and available technologies for detection. Using RNAseq, we have identified a trypanosome specific small RNA to be present at high levels in the serum of infected cattle. The small RNA is derived from the non-coding 7SL RNA of the peptide signal recognition particle and is detected in the serum of infected cattle at significantly higher levels than in the parasite, suggesting active processing and secretion. We show effective detection of the small RNA in the serum of infected cattle using a custom RT-qPCR assay. Strikingly, the RNA can be detected before microscopy detection of parasitaemia in the blood, and it can also be detected during remission periods of infection when no parasitaemia is detectable by microscopy. However, RNA levels drop following treatment with trypanocides, demonstrating accurate prediction of active infection. While the small RNA sequence is conserved between different species of trypanosome, nucleotide differences within the sequence allow generation of highly specific assays that can distinguish between infections with <i>Trypanosoma brucei</i>, <i>Trypanosoma congolense</i> and <i>Trypanosoma vivax</i>. Finally, we demonstrate effective detection of the small RNA directly from serum, without the need for pre-processing, with a single step RT-qPCR assay. Our findings identify a species-specific trypanosome small RNA that can be detected at high levels in the serum of cattle with active parasite infections. This provides the basis for the development of a cheap, non-invasive and highly effective diagnostic test for trypanosomiasis.</p></div

    Systematic MicroRNA Analysis Identifies ATP6V0C as an Essential Host Factor for Human Cytomegalovirus Replication

    Get PDF
    Recent advances in microRNA target identification have greatly increased the number of putative targets of viral microRNAs. However, it is still unclear whether all targets identified are biologically relevant. Here, we use a combined approach of RISC immunoprecipitation and focused siRNA screening to identify targets of HCMV encoded human cytomegalovirus that play an important role in the biology of the virus. Using both a laboratory and clinical strain of human cytomegalovirus, we identify over 200 putative targets of human cytomegalovirus microRNAs following infection of fibroblast cells. By comparing RISC-IP profiles of miRNA knockout viruses, we have resolved specific interactions between human cytomegalovirus miRNAs and the top candidate target transcripts and validated regulation by western blot analysis and luciferase assay. Crucially we demonstrate that miRNA target genes play important roles in the biology of human cytomegalovirus as siRNA knockdown results in marked effects on virus replication. The most striking phenotype followed knockdown of the top target ATP6V0C, which is required for endosomal acidification. siRNA knockdown of ATP6V0C resulted in almost complete loss of infectious virus production, suggesting that an HCMV microRNA targets a crucial cellular factor required for virus replication. This study greatly increases the number of identified targets of human cytomegalovirus microRNAs and demonstrates the effective use of combined miRNA target identification and focused siRNA screening for identifying novel host virus interactions

    31st Annual Meeting and Associated Programs of the Society for Immunotherapy of Cancer (SITC 2016) : part two

    Get PDF
    Background The immunological escape of tumors represents one of the main ob- stacles to the treatment of malignancies. The blockade of PD-1 or CTLA-4 receptors represented a milestone in the history of immunotherapy. However, immune checkpoint inhibitors seem to be effective in specific cohorts of patients. It has been proposed that their efficacy relies on the presence of an immunological response. Thus, we hypothesized that disruption of the PD-L1/PD-1 axis would synergize with our oncolytic vaccine platform PeptiCRAd. Methods We used murine B16OVA in vivo tumor models and flow cytometry analysis to investigate the immunological background. Results First, we found that high-burden B16OVA tumors were refractory to combination immunotherapy. However, with a more aggressive schedule, tumors with a lower burden were more susceptible to the combination of PeptiCRAd and PD-L1 blockade. The therapy signifi- cantly increased the median survival of mice (Fig. 7). Interestingly, the reduced growth of contralaterally injected B16F10 cells sug- gested the presence of a long lasting immunological memory also against non-targeted antigens. Concerning the functional state of tumor infiltrating lymphocytes (TILs), we found that all the immune therapies would enhance the percentage of activated (PD-1pos TIM- 3neg) T lymphocytes and reduce the amount of exhausted (PD-1pos TIM-3pos) cells compared to placebo. As expected, we found that PeptiCRAd monotherapy could increase the number of antigen spe- cific CD8+ T cells compared to other treatments. However, only the combination with PD-L1 blockade could significantly increase the ra- tio between activated and exhausted pentamer positive cells (p= 0.0058), suggesting that by disrupting the PD-1/PD-L1 axis we could decrease the amount of dysfunctional antigen specific T cells. We ob- served that the anatomical location deeply influenced the state of CD4+ and CD8+ T lymphocytes. In fact, TIM-3 expression was in- creased by 2 fold on TILs compared to splenic and lymphoid T cells. In the CD8+ compartment, the expression of PD-1 on the surface seemed to be restricted to the tumor micro-environment, while CD4 + T cells had a high expression of PD-1 also in lymphoid organs. Interestingly, we found that the levels of PD-1 were significantly higher on CD8+ T cells than on CD4+ T cells into the tumor micro- environment (p < 0.0001). Conclusions In conclusion, we demonstrated that the efficacy of immune check- point inhibitors might be strongly enhanced by their combination with cancer vaccines. PeptiCRAd was able to increase the number of antigen-specific T cells and PD-L1 blockade prevented their exhaus- tion, resulting in long-lasting immunological memory and increased median survival

    Zimbabwe Field Transect Data 2012 - 2020

    No full text
    Transect counts of birds in farmed and ranched areas during winters 2012, 2014, 2016, 2018 & 202

    Zimbabwe Field Data Master File

    No full text
    The dataset contains the birds recorded during transects winter 2012 and summer 2013. The sites in the Debshan ranched area are labelled D1-D23, and the farmed sites in the resettled area are labelled R1-R22. The raw count data that form the basis of the project are listed in the ‘Birds’ worksheet

    Systematic analysis of RISC-IP from HCMV infected fibroblast cells.

    No full text
    <p>(A) Schematic representation of RISC-IP procedure in HCMV infected and uninfected fibroblast cells. (B) Enrichment profile of all genes from AD169 infected cells. Genes were binned according to the enrichment ratio of infected vs uninfected. For example genes with an enrichment ratio from supplemental table 1 of between 0.5 and <2.0 were binned to 1 whereas genes with an enrichment profile of <0.5 but >0.33 were binned to −2. Total number of genes are shown above each bar. Values are skewed towards positive enrichment indicating effective enrichment of HCMV miRNA targets (C). Enrichment profile of the top 100 genes from cells infected with AD169 or TR. (D) Overlap of genes enriched greater than two fold between AD169 infected cells and TR infected cells. Correlation between the enriched profiles was highly significant as determined by Chi Squared test.</p
    corecore